4. [14 points] Consider a population P that is modeled by the first-order differential equation $P^{\prime}=f(P)$. In this problem we consider only $P \geq 0$, as a negative population is not physically relevant.
a. [4 points] If the phase line for the population is shown to the right, what could the differential equation be? Why?

b. [6 points] Now suppose that $f(P)$ depends on a parameter H, which measures the amount of harvesting of the population (e.g., if the population was fish, H could measure how many of the fish are caught through fishing). If the phase lines for $H=2, H=4$, and $H=6$ are shown to the right, which, if any, of the following equations could model the population? Explain. i. $P^{\prime}=-P(P-1)(P-H)$
ii. $P^{\prime}=P^{3}-4 P^{2}+H P$ iii. $P^{\prime}=-P\left(P^{2}-H P+4\right)$
iv. $P^{\prime}=-P\left(P^{2}-4 P+H\right)$

c. [4 points] Finally, sketch a qualitatively accurate plot of solutions to the equation for the case $H=4$.
