5. [15 points] For each of the following the given figure is a phase portrait for a system $\mathrm{x}^{\prime}=$ $\mathbf{A x}$, where \mathbf{A} is a constant 2×2 matrix. For each select the correct characterization of the eigenvalues of \mathbf{A} and fill in the requested information about an eigenvector of this matrix.

The eigenvalues of \mathbf{A} could be (circle one):

$$
\begin{array}{lr}
\lambda_{1}=1, \lambda_{2}=2 ; & \lambda_{1}=-1, \lambda_{2}=2 ; \\
\lambda_{1}=-1, \lambda_{2}=-2 ; & \lambda_{1,2}=1 \pm i ; \\
\lambda_{1,2}=-1 \pm i &
\end{array}
$$

If possible, give one eigenvector of \mathbf{A} (if it is not possible, write " n / a "):
b. [5 points]

The eigenvalues of \mathbf{A} could be (circle one):

$$
\begin{array}{lr}
\lambda_{1}=1, \lambda_{2}=2 ; & \lambda_{1}=-1, \lambda_{2}=2 ; \\
\lambda_{1}=-1, \lambda_{2}=-2 ; & \lambda_{1,2}=1 \pm i ; \\
\lambda_{1,2}=-1 \pm i &
\end{array}
$$

If possible, give one eigenvector of \mathbf{A} (if it is not possible, write " n / a "):
c. [5 points]

The eigenvalues of \mathbf{A} could be (circle one):

$$
\begin{array}{lr}
\lambda_{1}=1, \lambda_{2}=2 ; & \lambda_{1}=-1, \lambda_{2}=2 ; \\
\lambda_{1}=-1, \lambda_{2}=-2 ; & \lambda_{1,2}=1 \pm i ; \\
\lambda_{1,2}=-1 \pm i &
\end{array}
$$

If possible, give one eigenvector of \mathbf{A} (if it is not possible, write " n / a "):

