7. [16 points] The van der Pol equation has the form $x^{\prime \prime}+\mu \frac{d f}{d x} x^{\prime}+x=0$. In this problem suppose that $f(x)=-\sin (x)$, so that the equation becomes $x^{\prime \prime}-\mu \cos (x) x^{\prime}+x=0$.
a. [4 points] Letting $x_{1}=x$ and $x_{2}=x^{\prime}$, write this as a system of two first-order differential equations in x_{1} and x_{2}.
b. [4 points] Use a Taylor expansion to linearize the original equation at the critical point $x=0$.

Problem 7, continued.
c. [4 points] Suppose that the equation you obtained in (b) is, for some value of μ,

$$
x^{\prime \prime}+3 x^{\prime}+2 x=0 .
$$

Write this as a matrix equation in $\mathbf{x}=\binom{x_{1}}{x_{2}}$ and solve it.
d. [4 points] Sketch a phase portrait given your solution in (c). What does it tell us about the long-term behavior of the current x in the circuit?

