2. [14 points] Find real-valued solutions to each of the following, as indicated. (Note that minimal partial credit will be given on this problem.)
a. [7 points] The general solution to $x^{\prime}=x+8 y, y^{\prime}=2 x+y$.

Solution: With $\mathbf{x}=\binom{x}{y}$ this is $\mathbf{x}^{\prime}=\left(\begin{array}{ll}1 & 8 \\ 2 & 1\end{array}\right) \mathbf{x}$. We then look for $\mathbf{x}=\mathbf{v} e^{\lambda t}$, so that

$$
\operatorname{det}\left(\left(\begin{array}{cc}
1-\lambda & 8 \\
2 & 1-\lambda
\end{array}\right)\right)=(1-\lambda)^{2}-16=(\lambda-1)^{2}-16=0 .
$$

Thus $\lambda-1= \pm 4$, and $\lambda=-3$, 5. If $\lambda=-3$, we have $\left(\begin{array}{ll}4 & 8 \\ 2 & 4\end{array}\right) \mathbf{v}=\mathbf{0}$, so that $\mathbf{v}=\binom{-2}{1}$.
If $\lambda=5,\left(\begin{array}{cc}-4 & 8 \\ 2 & -4\end{array}\right) \mathbf{v}=\mathbf{0}$, and $\mathbf{v}=\binom{2}{1}$. Thus

$$
\mathbf{x}=\binom{x}{y}=c_{1}\binom{-2}{1} e^{-3 t}+c_{2}\binom{2}{1} e^{5 t} .
$$

b. [7 points] The solution to $\mathbf{x}^{\prime}=\left(\begin{array}{cc}0 & 4 \\ -1 & 0\end{array}\right) \mathbf{x}, \mathbf{x}(0)=\binom{-6}{0}$.

Solution: Again looking for $\mathbf{x}=\mathbf{v} e^{\lambda t}$, we have

$$
\operatorname{det}\left(\left(\begin{array}{cc}
-\lambda & 4 \\
-1 & -\lambda
\end{array}\right)\right)=\lambda^{2}+4=0
$$

so that $\lambda= \pm 2 i$. If $\lambda=2 i$, we have $\left(\begin{array}{cc}-2 i & 4 \\ -1 & -2 i\end{array}\right) \mathbf{v}=\mathbf{0}$, so that $\mathbf{v}=\binom{2}{i}$. A complexvalued solution is

$$
\mathbf{x}=\binom{2}{i}\left(\cos (2 t)+i \sin (2 t)=\binom{2 \cos (2 t)}{-\sin (2 t)}+i\binom{2 \sin (2 t)}{\cos (2 t)}=\mathbf{a}+i \mathbf{b},\right.
$$

so a real-valued general solution is $\mathbf{x}=c_{1} \mathbf{a}+c_{2} \mathbf{b}$. Applying the initial condition, $c_{1}=-3$ and $c_{2}=0$, so that

$$
\mathbf{x}=\binom{-6 \cos (2 t)}{3 \sin (2 t)}
$$

