4. [14 points] Consider a population P that is modeled by the first-order differential equation $P^{\prime}=f(P)$. In this problem we consider only $P \geq 0$, as a negative population is not physically relevant.
a. [4 points] If the phase line for the population is shown to the right, what could the differential equation be? Why?
Solution: There are many possible solutions to this; we need the function $f(P)$ to have zeros at $P=0, P=1$, and $P=3$, and to be negative for $0<P<1$ and $P>1$ and positive for $1<P<3$. One such function is $f(P)=-P(P-1)(P-3)$, so that $P^{\prime}=-P(P-1)(P-3)$.
b. [6 points] Now suppose that $f(P)$ depends on a parameter H, which measures the amount of harvesting of the population (e.g., if the population was fish, H could measure how many of the fish are caught through fishing). If the phase lines for $H=2, H=4$, and $H=6$ are shown to the right, which, if any, of the following equations could model the population? Explain. $\begin{array}{ll}\text { i. } P^{\prime}=-P(P-1)(P-H) & \text { ii. } P^{\prime}=P^{3}-4 P^{2}+H P \\ \text { ii. } P^{\prime}=-P\left(P^{2}-H P+4\right) & \text { iv. } P^{\prime}=-P\left(P^{2}-4 P+H\right)\end{array}$
Solution: We must have equilibrium solutions as shown, and the derivative must have the appropriate
 sign to give the indicated phase lines. In particular, for large P we must have $P^{\prime}<0$: this disqualifies (ii). Then, when $H=4$ the roots of the expression on the right-hand side of the equation must be $P=0,2$: this disqualifies (i). Finally, note that (iii) has roots $P=0$ and $P=\frac{1}{2} H \pm \frac{1}{2} \sqrt{H^{2}-16}$. When $H=6$ this has a positive root, which shouldn't be the case, so it is also not correct. By elimination, the equation must be (iv); this has roots $P=0$ and $P=2 \pm \sqrt{4-H}$, which gives exactly the phase lines shown. This is therefore correct.
c. [4 points] Finally, sketch a qualitatively accurate plot of solutions to the equation for the case $H=4$.
Solution: An appropriate sketch is something like the following.

