4. [14 points] Consider a population \(P \) that is modeled by the first-order differential equation

\[P' = f(P). \]

In this problem we consider only \(P \geq 0 \), as a negative population is not physically relevant.

a. [4 points] If the phase line for the population is shown to the right, what could the differential equation be? Why?

Solution: There are many possible solutions to this; we need the function \(f(P) \) to have zeros at \(P = 0, P = 1, \) and \(P = 3 \), and to be negative for \(0 < P < 1 \) and \(P > 1 \) and positive for \(1 < P < 3 \). One such function is \(f(P) = -P(P-1)(P-3) \), so that \(P' = -P(P-1)(P-3) \).

b. [6 points] Now suppose that \(f(P) \) depends on a parameter \(H \), which measures the amount of harvesting of the population (e.g., if the population was fish, \(H \) could measure how many of the fish are caught through fishing). If the phase lines for \(H = 2 \), \(H = 4 \), and \(H = 6 \) are shown to the right, which, if any, of the following equations could model the population? Explain.

\[
\begin{align*}
\text{i. } & P' = -P(P-1)(P-H) \\
\text{ii. } & P' = P^3 - 4P^2 + HP \\
\text{iii. } & P' = -P(P^2 - HP + 4) \\
\text{iv. } & P' = -P(P^2 - 4P + H)
\end{align*}
\]

Solution: We must have equilibrium solutions as shown, and the derivative must have the appropriate sign to give the indicated phase lines. In particular, for large \(P \) we must have \(P' < 0 \): this disqualifies (ii). Then, when \(H = 4 \) the roots of the expression on the right-hand side of the equation must be \(P = 0, 2 \): this disqualifies (i). Finally, note that (iii) has roots \(P = 0 \) and \(P = \frac{1}{2}H \pm \frac{1}{2}\sqrt{H^2 - 16} \). When \(H = 6 \) this has a positive root, which shouldn’t be the case, so it is also not correct. By elimination, the equation must be (iv); this has roots \(P = 0 \) and \(P = 2 \pm \sqrt{4 - H} \), which gives exactly the phase lines shown. This is therefore correct.

c. [4 points] Finally, sketch a qualitatively accurate plot of solutions to the equation for the case \(H = 4 \).

Solution: An appropriate sketch is something like the following.