5. [15 points] For each of the following the given figure is a phase portrait for a system $\mathbf{x}' = \mathbf{A}\mathbf{x}$, where \mathbf{A} is a constant 2×2 matrix. For each select the correct characterization of the eigenvalues of \mathbf{A} and fill in the requested information about an eigenvector of this matrix.

Solution: There are trajectories approaching and leaving the origin, so we must have a positive and a negative value of λ . Trajectories leave the origin along the *y*-axis, so one eigenvector must be $\mathbf{v} = \begin{pmatrix} 0 & 1 \end{pmatrix}^T$. (The other has trajectories which converge to the origin, and is $\mathbf{v} = \begin{pmatrix} 3 & -1 \end{pmatrix}^T$, but this isn't possible to determine exactly.)

Solution: There are two straight line trajectories (one along the x-axis), so the eigenvalues and vectors must be real, and one eigenvector must be $\mathbf{v} = \begin{pmatrix} 1 & 0 \end{pmatrix}^T$. Both eigenvalues are negative because all trajectories approach the origin. (The second eigenvector looks to be, and is, $\mathbf{v} = \begin{pmatrix} 2 & -1 \end{pmatrix}^T$.)

Solution: There are no straight line solutions, and it appears that the trajectories all spiral in to the origin, so λ must be complex, and we cannot tell what the eigenvectors are.