6. [12 points] Identify each of the following as true or false, by circling "True" or "False" as appropriate, and provide a short (one or two sentence) explanation indicating why you selected that answer.
a. [3 points] The initial value problem $\left(y^{2}-1\right) y^{\prime}=(t-1), y(0)=0$, is guaranteed to have a unique solution for all times $t>0$.
True False

Solution: We note that this is a nonlinear equation of the from $y^{\prime}=f(t, y)$, with f and $\frac{\partial f}{\partial y}$ being discontinuous only at $y= \pm 1$. Thus we are guaranteed a unique solution through the initial condition, but the interval on which it exists may be constrained. In this case, it exists only for $t<1+\sqrt{\frac{7}{3}}$ (though this isn't immediately obvious from the equation).
b. [3 points] If the eigenvalues of a 2×2 constant, real-valued matrix \mathbf{A} are $\lambda_{1}=0$ and $\lambda_{2}=1$, then the system of algebraic equations $\mathbf{A x}=\mathbf{0}$ has infinitely many nonzero solutions.
True False

Solution: If $\lambda=0$ is an eigenvalue, then we know that $\operatorname{det}(\mathbf{A}-0 \mathbf{I})=\operatorname{det}(\mathbf{A})=0$. This means that $\mathbf{A x}=\mathbf{b}$ has no or an infinite number of solutions for any \mathbf{b}; if $\mathbf{b}=\mathbf{0}$, there must be an infinite number, of which the zero solution is one.
c. $\left[3\right.$ points] If $\mathbf{A}=\left(\begin{array}{cc}-1 & a \\ -a & -1\end{array}\right)$, then component plots for the system of equations $\mathbf{x}^{\prime}=\mathbf{A x}$ will appear as in the figure to the right for all real values of a.
True

False

Solution: Technically this is false, but if one is not being too tricky and assumes that $a \neq 0$, it is true. In that case eigenvalues of \mathbf{A} are given by $(\lambda+1)^{2}=-a^{2}$, so $\lambda=-1 \pm i a$, and solutions will be decaying and oscillatory, which is what is shown here. If $a=0$, however, we have $\lambda=-1$, twice, and there are two linearly independent eigenvectors. Thus in that case we would have strictly decaying solutions. (Either of these responses were accepted as correct for this problem.)
d. [3 points] A first-order problem such as $y^{\prime}=t \sin (y)+\cos (y)$, which is neither linear nor separable, is amenable to qualitative analysis by drawing a phase line and sketching qualitatively accurate solution curves.
True False

Solution: This type of qualitative analysis only works with autonomous equations, for which the dependence on the independent variable t is implicit.

