7. [16 points] The van der Pol equation has the form $x^{\prime \prime}+\mu \frac{d f}{d x} x^{\prime}+x=0$. In this problem suppose that $f(x)=-\sin (x)$, so that the equation becomes $x^{\prime \prime}-\mu \cos (x) x^{\prime}+x=0$.
a. [4 points] Letting $x_{1}=x$ and $x_{2}=x^{\prime}$, write this as a system of two first-order differential equations in x_{1} and x_{2}.
Solution: We have

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=-x_{1}+\mu \cos \left(x_{1}\right) x_{2} .
\end{aligned}
$$

b. [4 points] Use a Taylor expansion to linearize the original equation at the critical point $x=0$.
Solution: Using the Taylor series for $\cos (x)$, we have $\cos (x)=1-\frac{1}{2} x^{2}+\cdots$, so that the equation is $x^{\prime \prime}-\mu\left(1-\frac{1}{2} x^{2}+\cdots\right) x^{\prime}+x=0$. Expanding and dropping nonlinear terms, we have

$$
x^{\prime \prime}-\mu x^{\prime}+x=0
$$

Problem 7, continued.
c. [4 points] Suppose that the equation you obtained in (b) is, for some value of μ,

$$
x^{\prime \prime}+3 x^{\prime}+2 x=0 .
$$

Write this as a matrix equation in $\mathbf{x}=\binom{x_{1}}{x_{2}}$ and solve it.
Solution: We have

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=-2 x_{1}-3 x_{2}
\end{aligned}, \quad \text { or } \quad\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

Letting $\mathbf{x}=\mathbf{v} e^{\lambda t}$, we must have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(-\lambda)(-\lambda-3)+2=\lambda^{2}+3 \lambda+2=$ $(\lambda+2)(\lambda+1)=0$. Thus $\lambda=-2$ and $\lambda=-1$. The eigenvector for $\lambda=-2$ satisfies $\left(\begin{array}{cc}2 & 1 \\ -2 & -1\end{array}\right) \mathbf{v}=\mathbf{0}$, so $\mathbf{v}=\binom{1}{-2}$. Similarly, for $\lambda=-1$, we have $\left(\begin{array}{cc}1 & 1 \\ -2 & -2\end{array}\right) \mathbf{v}=\mathbf{0}$, so $\mathbf{v}=\binom{1}{-1}$. The general solution to the problem is

$$
\binom{x_{1}}{x_{2}}=c_{1}\binom{1}{-2} e^{-2 t}+c_{2}\binom{1}{-1} e^{-t} .
$$

d. [4 points] Sketch a phase portrait given your solution in (c). What does it tell us about the long-term behavior of the current x in the circuit?

Solution: The two straight-line solutions in the problem lie along $y=-x$ and $y=-x / 2$, and the latter decays much faster than the former. Thus we have the phase portrait shown below.

This indicates that the current ($x=x_{1}$) will asymptotically approach 0 for all initial currents.

