2. [15 points] Lake Huron and Lake Erie are two of the Great Lakes, as shown to the right. The volume of Lake Huron is very approximately 4,000 km³, and that of Lake Erie approximately 500 km³. We assume that the flow into and out of both lakes is the same, approximately 200 km³/year, and that all water that flows out of Lake Huron flows into Lake Erie. Suppose that a ruptured oil line adds 30×10^9 kg/year of oil into Lake Huron.

a. [5 points] Write a system of equations for x_1 , the amount of oil in Lake Huron, and x_2 , the amount in Lake Erie. Assume that the oil is well mixed in either lake, and that the water entering Lake Huron is clean.

b. [5 points] Solve your equation for x_1 directly and use that to solve for x_2 . It will likely be convenient to write your answer in terms of the constant $r = 3 \times 10^{10}$.

c. [5 points] Using your work in (a) and (b), write your system from (a) as a matrix equation, and write the solution as a vector $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. What are the eigenvectors of the coefficient matrix in your system?