- **3**. [14 points] In the following, the matrices **A** and **B** are 2×2 real-valued matrices. The vector \mathbf{x} is a 2×1 vector $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$
 - **a.** [7 points] If $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and the solution to $\mathbf{A}\mathbf{x} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$ is illustrated in the figure to the right, what are the eigenvalues of **A**?

b. [7 points] Suppose that $\mathbf{B} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$ and $\mathbf{B} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$. What is the general solution to $\mathbf{x}' = \mathbf{B}\mathbf{x}$?