5. [15 points] Consider the initial value problem $y^{\prime}=-\frac{1}{2} y+\sin (y), y\left(t_{0}\right)=y_{0}$.
a. [5 points] Without trying to solve it, does this initial value problem have a solution? Does your answer depend on the values of t_{0} and y_{0} ? Explain.
b. [5 points] By using the Taylor expansion for $\sin (y)$ near the critical point $y=0$, write a linear equation approximating this equation and solve it. If we start with $y(0)=y_{0}$ with y_{0} small, what does it predict will happen to the solution of the (nonlinear) problem? Is the critical point $y=0$ stable or unstable?
c. [5 points] Retain another term in the expansion for $\sin (y)$ and write a new differential equation that approximates the equation we started with. Find all critical points, draw a phase line, and explain what it predicts for the behavior of the system for large times.
