1. [15 points] Find real-valued solutions to each of the following, as indicated. Where possible, find explicit solutions.
a. $[8$ points $] \ln \left(1 / y^{2}\right) \frac{d y}{d t}=r y, y(0)=e$.

Solution: Separating variables and using rules of logarithms, we have

$$
(-2 \ln (y)) \frac{d y}{y}=r d t
$$

so that on integrating both sides we have

$$
-(\ln (y))^{2}=r t+C .
$$

Evaluating the initial condition, we have $-1=C$. We therefore have the implicit solution

$$
(\ln (y))^{2}=1-r t .
$$

Solving for $\ln (y), \ln (y)= \pm \sqrt{1-r t}$, and we take the positive square root to ensure the initial condition is satisfied. Thus

$$
y=e^{\sqrt{1-r t}} .
$$

b. [7 points] Find the general solution to $t \frac{d y}{d t}=r y+t^{2}$.

Solution: Note that this is linear but not separable. Putting it in standard form, we have $\frac{d y}{d t}-\frac{r}{t} y=t$, so that an integrating factor is

$$
\mu=e^{\int-\frac{r}{t} d t}=e^{-r \ln |t|}=t^{-r} .
$$

Multiplying by μ, we have $\left(y t^{-r}\right)^{\prime}=t^{-r+1}$, so that $y t^{-r}=\frac{1}{-r+2} t^{-r+2}+C$, and

$$
y=\frac{1}{-r+2} t^{2}+C t^{r} .
$$

