- **1**. [15 points] Find real-valued solutions to each of the following, as indicated. Where possible, find explicit solutions.
 - **a.** [8 points] $\ln(1/y^2) \frac{dy}{dt} = r y, y(0) = e.$

Solution: Separating variables and using rules of logarithms, we have

$$(-2\ln(y))\frac{dy}{y} = r\,dt,$$

so that on integrating both sides we have

$$-(\ln(y))^2 = rt + C.$$

Evaluating the initial condition, we have -1 = C. We therefore have the implicit solution

$$(\ln(y))^2 = 1 - rt.$$

Solving for $\ln(y)$, $\ln(y) = \pm \sqrt{1 - rt}$, and we take the positive square root to ensure the initial condition is satisfied. Thus

$$y = e^{\sqrt{1-rt}}$$

b. [7 points] Find the general solution to $t\frac{dy}{dt} = ry + t^2$.

Solution: Note that this is linear but not separable. Putting it in standard form, we have $\frac{dy}{dt} - \frac{r}{t}y = t$, so that an integrating factor is

$$\mu = e^{\int -\frac{r}{t} dt} = e^{-r \ln|t|} = t^{-r}$$

Multiplying by μ , we have $(yt^{-r})' = t^{-r+1}$, so that $yt^{-r} = \frac{1}{-r+2}t^{-r+2} + C$, and

$$y = \frac{1}{-r+2} t^2 + C t^r.$$