2. [15 points] Lake Huron and Lake Erie are two of the Great Lakes, as shown to the right. The volume of Lake Huron is very approximately $4,000 \mathrm{~km}^{3}$, and that of Lake Erie approximately $500 \mathrm{~km}^{3}$. We assume that the flow into and out of both lakes is the same, approximately $200 \mathrm{~km}^{3} /$ year, and that all water that flows out of Lake Huron flows into Lake Erie. Suppose that a ruptured oil line adds $30 \times 10^{9} \mathrm{~kg} /$ year
 of oil into Lake Huron.
a. [5 points] Write a system of equations for x_{1}, the amount of oil in Lake Huron, and x_{2}, the amount in Lake Erie. Assume that the oil is well mixed in either lake, and that the water entering Lake Huron is clean.
Solution: For both lakes we have $\frac{d x}{d t}=$ input - output. For Lake Huron the input is $r=3 \times 10^{10} \mathrm{~kg} /$ year. The output for both lakes is ($200 \mathrm{~km}^{3} /$ year)(concentration), where concentration $=x /$ volume. The output from Lake Huron is the input for Lake Erie. Thus we have the system

$$
\frac{d x_{1}}{d t}=r-\frac{200}{4000} x_{1}, \quad \frac{d x_{2}}{d t}=\frac{200}{4000} x_{1}-\frac{200}{500} x_{2} .
$$

b. [5 points] Solve your equation for x_{1} directly and use that to solve for x_{2}. It will likely be convenient to write your answer in terms of the constant $r=3 \times 10^{10}$.
Solution: The equation for x_{1} is $x_{1}^{\prime}+0.05 x_{1}=r$, so an integrating factor is $\mu=$ $e^{0.05 t}$. Multiplying by μ and integrating, we have $e^{0.05 t} x_{1}=20 r e^{0.05 t}+C$, so that $x_{1}=20 r+C e^{-0.05 t}$. We assume that $x_{1}(0)=0$, so that $x_{1}=20 r\left(1-e^{-0.05 t}\right)$.
Plugging this into the equation for x_{2}, we have $x_{2}^{\prime}+0.4 x_{2}=r\left(1-e^{-0.05 t}\right)$. Proceeding similarly, an integrating factor is $\mu=e^{0.4 t}$, so that $\left(e^{0.4 t} x_{2}\right)^{\prime}=r e^{0.4 t}-r e^{0.35 t}$. Integrating both sides, $e^{0.4 t} x_{2}=\frac{5}{2} r e^{0.4 t}-\frac{20}{7} r e^{0.35 t}+C$, so that $x_{2}=\frac{5}{2} r-\frac{20}{7} r e^{-0.05 t}+C e^{-0.4 t}$. With $x_{2}(0)=0, C=\left(\frac{20}{7}-\frac{5}{2}\right) r=\frac{5}{14} r$, and $x_{2}=5 r\left(\frac{1}{2}-\frac{4}{7} e^{-0.05 t}+\frac{1}{14} e^{-0.4 t}\right)$.
c. [5 points] Using your work in (a) and (b), write your system from (a) as a matrix equation, and write the solution as a vector $\mathbf{x}=\binom{x_{1}}{x_{2}}$. What are the eigenvectors of the coefficient matrix in your system?
Solution: We have $\mathbf{x}^{\prime}=\left(\begin{array}{cc}-0.05 & 0 \\ 0.05 & -0.4\end{array}\right) \mathbf{x}+\binom{r}{0}$. The solution is $\mathbf{x}=\binom{-20 r}{-20 r / 7} e^{-0.05 t}+$ $\binom{0}{5 r / 14} e^{-0.4 t}+\binom{20 r}{5 r / 2}$, from which we see that the eigenvectors are $\binom{7}{20}$ and $\binom{0}{1}$.

