3. [14 points] In the following, the matrices \mathbf{A} and \mathbf{B} are 2×2 real-valued matrices. The vector \mathbf{x} is a 2×1 vector $\mathbf{x}=\binom{x_{1}}{x_{2}}$
a. [7 points] If $\mathbf{x}=\binom{x_{1}}{x_{2}}$ and the solution to $\mathbf{A} \mathbf{x}=\binom{3}{-1}$ is illustrated in the figure to the right, what are the eigenvalues of A?
Solution: We see that the two lines shown are $x_{2}=3-x_{1}$ and $x_{2}=3 x_{1}-1$. Because the right-hand side of the system of equations given is $\left(\begin{array}{ll}3 & -1\end{array}\right)$, the equations must be $x_{1}+x_{2}=3$ and $-3 x_{1}+x_{2}=-1$. Therefore the rows of A must be $\left(\begin{array}{ll}1 & 1\end{array}\right)$ and $\left(\begin{array}{ll}-3 & 1\end{array}\right)$, and because the solution
 shown is (1,2), the matrix \mathbf{A} must be $\mathbf{A}=\left(\begin{array}{cc}1 & 1 \\ -3 & 1\end{array}\right)$.
The eigenvalues are determined by $(1-\lambda)(1-\lambda)+3=$ $(\lambda-1)^{2}+3=0$, so that $\lambda=1 \pm i \sqrt{3}$.
b. [7 points] Suppose that $\mathbf{B}\binom{1}{1}=\binom{3}{3}$ and $\mathbf{B}\binom{1}{-2}=\binom{-2}{4}$. What is the general solution to $\mathrm{x}^{\prime}=\mathbf{B x}$?
Solution: These two systems tell us that the eigenvalues and eigenvectors of \mathbf{B} are $\lambda=3$ and $\lambda=-2$, with $\mathbf{v}=\binom{1}{1}$ and $\mathbf{v}=\binom{1}{-2}$. The general solution is therefore $\mathbf{x}=c_{1}\binom{1}{1} e^{3 t}+c_{2}\binom{1}{-2} e^{-2 t}$.
