4. [15 points] Find explicit, real-valued solutions to the following, as indicated.
a. [8 points] $x^{\prime}=x+2 y, y^{\prime}=3 x-4 y, x(0)=1, y(0)=4$.

Solution: The coefficient matrix for this system is $\mathbf{A}=\left(\begin{array}{cc}1 & 2 \\ 3 & -4\end{array}\right)$, so that eigenvalues satisfy $(1-\lambda)(-4-\lambda)-6=\lambda^{2}+3 \lambda-10=(\lambda+5)(\lambda-2)=0$. Thus $\lambda=-5$ or $\lambda=2$. If $\lambda=-5$, eigenvectors satisfy $6 v_{1}+2 v_{2}=0$, so that $\mathbf{v}=\binom{1}{-3}$. If $\lambda=2$, eigenvectors satisfy $-v_{1}+2 v_{2}=0$, so that $\mathbf{v}=\binom{2}{1}$. The general solution is

$$
\mathbf{x}=\binom{x}{y}=c_{1}\binom{1}{-3} e^{-5 t}+c_{2}\binom{2}{1} e^{2 t} .
$$

Applying the initial conditions, we have $c_{1}+2 c_{2}=1$, and $-3 c_{1}+c_{2}=4$. Adding three times the first to the second, we have $7 c_{2}=7$, so $c_{2}=1$. Then $c_{1}=1-2=-1$, so our solution is

$$
\mathbf{x}=\binom{x}{y}=\binom{-1}{3} e^{-5 t}+\binom{2}{1} e^{2 t} .
$$

b. $[7$ points $] \quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & 1 \\ -8 & -3\end{array}\right) \mathbf{x}$.

Solution: Eigenvalues of the coefficient matrix are given by $(1-\lambda)(-3-\lambda)+8=$ $\lambda^{2}+2 \lambda+5=(\lambda+1)^{2}+4=0$, so $\lambda=-1 \pm 2 i$. With $\lambda=-1+2 i$, the eigenvector satisfies $(2-2 i) v_{1}+v_{2}=0$, so we have $\mathbf{v}=\binom{1}{-2+2 i}$ (or any constant multiple thereof; in particular, $\binom{-1-i}{4}$ is another option). To find a real-valued solution, we separate out the real and imaginary parts of $\mathbf{x}=\mathbf{v} e^{\lambda t}$. These are the real and imaginary parts of

$$
\mathbf{x}=\binom{1}{-2+2 i} e^{-t}(\cos (2 t)+i \sin (2 t))
$$

which are $\operatorname{Re}(\mathbf{x})=\binom{\cos (2 t)}{-2 \cos (2 t)-2 \sin (2 t)} e^{-t}$ and $\operatorname{Im}(\mathbf{x})=\binom{\sin (2 t)}{2 \cos (2 t)-2 \sin (2 t)} e^{-t}$. The general solution is therefore

$$
\mathbf{x}=c_{1}\binom{\cos (2 t)}{-2 \cos (2 t)-2 \sin (2 t)} e^{-t}+c_{2}\binom{\sin (2 t)}{2 \cos (2 t)-2 \sin (2 t)} e^{-t}
$$

(With $\mathbf{v}=\binom{-1-i}{4}$, we get $\mathbf{x}=c_{1}\binom{-\cos (2 t)+\sin (2 t)}{4 \cos (2 t)} e^{-t}+c_{2}\binom{-\cos (2 t)-\sin (2 t)}{4 \sin (2 t)} e^{-t}$.)

