5. [15 points] Consider the initial value problem $y^{\prime}=-\frac{1}{2} y+\sin (y), y\left(t_{0}\right)=y_{0}$.
a. [5 points] Without trying to solve it, does this initial value problem have a solution? Does your answer depend on the values of t_{0} and y_{0} ? Explain.
Solution: We see that $f(t, y)=-\frac{1}{2} y+\sin (y)$ is continuous and has a continuous first partial f_{y} (for all t and y). Therefore, our theorem on the existence and uniqueness of solutions guarantees that there is a unique solution through $y\left(t_{0}\right)=y_{0}$ for any t_{0} and any y_{0}. However, we do not, a priori, know the full domain of this solution.
b. [5 points] By using the Taylor expansion for $\sin (y)$ near the critical point $y=0$, write a linear equation approximating this equation and solve it. If we start with $y(0)=y_{0}$ with y_{0} small, what does it predict will happen to the solution of the (nonlinear) problem? Is the critical point $y=0$ stable or unstable?

Solution: We have $\sin (y) \approx y-\frac{1}{6} y^{3}+\frac{1}{120} y^{5}-\cdots$, so our linear approximation is $y^{\prime}=\frac{1}{2} y$. The solution is tremendously easy: $y=y_{0} e^{t / 2}$, and solutions grow. Thus, this predicts that for the nonlinear problem, if we start with y_{0} close to zero solution trajectories will grow away from $y=y_{0}$. The critical point is unstable.
c. [5 points] Retain another term in the expansion for $\sin (y)$ and write a new differential equation that approximates the equation we started with. Find all critical points, draw a phase line, and explain what it predicts for the behavior of the system for large times.

Solution: If we retain another term, we have $y^{\prime}=\frac{1}{2} y-\frac{1}{6} y^{3}$. Critical points are given by $0=y\left(1-\frac{1}{3} y^{2}\right)$, which are when $y=0$ and $y= \pm \sqrt{3}$. With $f(y)=\frac{1}{2} y-\frac{1}{6} y^{3}$, we have $f^{\prime}(y)=\frac{1}{2}-\frac{1}{3} y^{2}$, so $f^{\prime}(0)>0$ and $f^{\prime}(\pm \sqrt{3})<0$, indicating that $y=0$ is unstable and $y= \pm \sqrt{3}$ are asymptotically stable. This is indicated in the phase line shown below.

This suggests that every positive initial condition will eventually converge to $y=\sqrt{3}$, and every negative initial condition will converge to $y=-\sqrt{3}$. (And, of course, an initial condition of $y=0$ will remain there.)

