6. [14 points] Suppose that the phase portrait to the right is the phase portrait for a system of differential equations $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$, where \mathbf{A} is a 2×2 constant, real-valued matrix. If the system is obtained by rewriting a second order equation as a system of first-order equations, give a possible matrix for A. Explain how you know your choice is correct.
Solution: Because the system is a rewritten second order equation, we must have started with an equation $x^{\prime \prime}-$ $b x^{\prime}-a x=0$; taking $x^{\prime}=y$, the resulting system is $\binom{x}{y}^{\prime}=\left(\begin{array}{ll}0 & 1 \\ a & b\end{array}\right)\binom{x}{y}$. We know that the eigenvalues of
 the coefficient matrix must be complex-valued (because the phase portrait shows a spiral) and have a positive real part (because trajectories move out from the origin). The eigenvalues of our matrix are given by $-\lambda(b-\lambda)-a=\lambda^{2}-b \lambda-a=0$ For convenience, let $b=2$. Then the characteristic equation is $\lambda^{2}-2 \lambda-a=(\lambda-1)^{2}-(a+1)=0$, and if $a<1$ we have complex roots. For example, if $a=-2$, we have $\lambda=1 \pm i$. Our matrix could therefore be

$$
\mathbf{A}=\left(\begin{array}{cc}
0 & 1 \\
-2 & 2
\end{array}\right)
$$

(Note that at $(1,0)$, this gives $\mathbf{x}^{\prime}=\binom{0}{-2}$, a trajectory moving straight down past the x_{1} axis, as shown in the figure.)
More generally, because $\lambda^{2}-b \lambda-a=0$ we have $\lambda=\frac{1}{2} b \pm \frac{1}{2} \sqrt{b^{2}+4 a}$, and therefore we must have $b>0$ and $b^{2}+4 a<0$, so that $a<-\frac{1}{4} b^{2}$. Any matrix satisfying these conditions will give us the desired phase portrait.

