4. [15 points] Consider the system of differential equations given by $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ with the initial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$.
a. [4 points] If $\mathbf{P}(t)=\left(\begin{array}{cc}0 & 1 \\ -2 t^{-2} & 2 t^{-1}\end{array}\right)$, is this a linear or nonlinear problem? If we apply the initial condition, will there be a unique solution? Explain.
b. [6 points] If $\mathbf{P}(t)=\mathbf{A}$, a 2×2 constant real-valued matrix, and if a general solution to the system is $\mathbf{x}=c_{1} \mathbf{v}_{1} e^{\lambda t}+c_{2}\left(t \mathbf{v}_{1}+\mathbf{v}_{2}\right) e^{\lambda t}$, how many solutions are there to each of the following algebraic systems of equations? Why?
(i) $\mathbf{A x}=2 \lambda \mathbf{x}$
(ii) $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{v}_{1}$
c. [5 points] If $\mathbf{P}(t)=\mathbf{B}$, a 2×2 constant real-valued matrix, and a solution to the system is $\mathbf{x}=\binom{\cos (3 t)}{\cos (3 t)-2 \sin (3 t)} e^{-4 t}$, what are the eigenvalues and eigenvectors of \mathbf{B} ?
