1. [15 points] Solve each of the following, finding explicit real-valued solutions as indicated.
a. [7 points] Find the general solution to $y^{\prime}=\frac{5+5 s^{5}-5 s^{4} y}{1+s^{5}}$.

Solution: Simplifying the fraction on the right-hand side, this is $y^{\prime}=5-\frac{5 s^{4}}{1+s^{5}} y$, which is a first-order linear problem. In standard form, this is $y^{\prime}+\frac{5 s^{4}}{1+s^{5}} y=5$, so (noting that $\left.\int \frac{5 s^{4}}{1+s^{5}} d s=\ln \left|1+s^{5}\right|\right)$ an integrating factor is $\mu=1+s^{5}$. Multiplying both sides by μ, $(\mu y)^{\prime}=5+5 s^{5}$. Integrating, $\left(1+s^{5}\right) y=5 s+\frac{5}{6} s^{6}+C$, so that

$$
y=\frac{5 s+\frac{5}{6} s^{6}+C}{1+s^{5}}
$$

b. [8 points] Solve the initial value problem $R^{\prime}=(2-10 z) R^{2}, R(0)=-2$.

Solution: This is first-order and nonlinear, but separable. Separating, we have $R^{\prime} / R^{2}=$ $2-10 z$, so that $-R^{-1}=2 z-5 z^{2}+C$, and

$$
R=-\frac{1}{2 z-5 z^{2}+C}
$$

For $R(0)=-2, C=\frac{1}{2}$, and

$$
R=-\frac{1}{2 z-5 z^{2}+\frac{1}{2}} .
$$

