2. [15 points] Solve each, finding explicit real-valued solutions as indicated.
a. [8 points] Solve the initial value problem $x^{\prime}=-y, y^{\prime}=12 x-7 y, x(0)=2, y(0)=1$.

Solution: In matrix form, this is $\binom{x}{y}^{\prime}=\left(\begin{array}{cc}0 & -1 \\ 12 & -7\end{array}\right)\binom{x}{y}$. The eigenvalues of the coefficient matrix are given by $\operatorname{det}\left(\left(\begin{array}{cc}-\lambda & -1 \\ 12 & -7-\lambda\end{array}\right)\right)=\lambda^{2}+7 \lambda+12=(\lambda+3)(\lambda+4)=0$. Thus $\lambda=-4$ or $\lambda=-3$. Note that the first row of the equation $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0}$ for the eigenvector gives $\mathbf{v}=\binom{1}{\lambda}$, so the corresponding eigenvectors are $\mathbf{v}=\binom{1}{-4}$ and $\mathbf{v}=\binom{1}{-3}$. The general solution is therefore

$$
\mathbf{x}=c_{1}\binom{1}{-4} e^{-4 t}+c_{2}\binom{1}{-3} e^{-3 t}
$$

Applying the initial conditions, we have $c_{1}+c_{2}=2$ and $4 c_{1}+3 c_{2}=1$. Subtracting the second from four times the first, $c_{2}=7$, so that $c_{1}=-5$. The solution is

$$
\mathbf{x}=-5\binom{-1}{4} e^{-4 t}+7\binom{1}{-3} e^{-3 t}
$$

b. $[7$ points $]$ Find the general solution to $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{ll}6 & -5 \\ 4 & -2\end{array}\right)\binom{x_{1}}{x_{2}}$.

Solution: The eigenvalues of the coefficient matrix are given by $(6-\lambda)(-2-\lambda)+20=$ $\lambda^{2}-4 \lambda+8=(\lambda-2)^{2}+4=0$. Thus $\lambda=2 \pm 2 i$. If $\lambda=2+2 i$, the components of the eigenvector satisfy $(4-2 i) v_{1}-5 v_{2}=0$, so we may take $\mathbf{v}=\binom{5}{4-2 i}$. A complexvalued solution is therefore $\mathbf{x}=\binom{5}{4-2 i} e^{2 t}(\cos (2 t)+i \sin (2 t))$. Separating the real and imaginary parts of this, we have

$$
\mathbf{x}=c_{1}\binom{5 \cos (2 t)}{4 \cos (2 t)+2 \sin (2 t)} e^{2 t}+c_{2}\binom{5 \sin (2 t)}{-2 \cos (2 t)+4 \sin (2 t)} e^{2 t} .
$$

Alternately, we could take $\mathbf{v}=\binom{2+i}{2}$, so that

$$
\mathbf{x}=c_{1}\binom{2 \cos (2 t)-\sin (2 t)}{2 \cos (2 t)} e^{2 t}+c_{2}\binom{\cos (2 t)+2 \sin (2 t)}{2 \sin (2 t)} e^{2 t}
$$

