4. [15 points] Consider the system of differential equations given by $\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}$ with the initial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$.
a. [4 points] If $\mathbf{P}(t)=\left(\begin{array}{cc}0 & 1 \\ -2 t^{-2} & 2 t^{-1}\end{array}\right)$, is this a linear or nonlinear problem? If we apply the initial condition, will there be a unique solution? Explain.
Solution: This is a linear problem, though non-constant coefficient. Accordingly, there will be a unique solution through any $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$ where $\mathbf{P}(t)$ is continuous. That is, through any $t_{0} \neq 0$. The solution will exist on the interval $(0, \infty)$ or $(-\infty, 0)$, depending on whether $t_{0}>0$ or $t_{0}<0$.
b. [6 points] If $\mathbf{P}(t)=\mathbf{A}$, a 2×2 constant real-valued matrix, and if a general solution to the system is $\mathbf{x}=c_{1} \mathbf{v}_{1} e^{\lambda t}+c_{2}\left(t \mathbf{v}_{1}+\mathbf{v}_{2}\right) e^{\lambda t}$, how many solutions are there to each of the following algebraic systems of equations? Why?
(i) $\mathbf{A x}=2 \lambda \mathbf{x}$
(ii) $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{v}_{1}$

Solution: (i) Note that we know the only eigenvalue is λ, with eigenvector \mathbf{v}_{1}. Thus 2λ is not an eigenvalue, and we cannot find a non-zero solution to $\mathbf{A x}=2 \lambda \mathbf{x}$. The only solution is $\mathbf{x}=\mathbf{0}$.
(ii) In this case, we know there are an infinite number of solutions: we're solving for the generalized eigenvector, which is only unique up to an additive multiple of the eigenvector \mathbf{v}_{1}. We can see this directly by noting that $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{1}=0$: thus

$$
(\mathbf{A}-\lambda \mathbf{I})\left(\mathbf{v}_{2}+k \mathbf{v}_{1}\right)=(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{2}+k(\mathbf{A}-\lambda \mathbf{I}) \mathbf{v}_{1}=\mathbf{v}_{1}+\mathbf{0} .
$$

c. [5 points] If $\mathbf{P}(t)=\mathbf{B}$, a 2×2 constant real-valued matrix, and a solution to the system is $\mathbf{x}=\binom{\cos (3 t)}{\cos (3 t)-2 \sin (3 t)} e^{-4 t}$, what are the eigenvalues and eigenvectors of \mathbf{B} ?
Solution: If this is a solution, we can immediately see that the eigenvalues must be $\lambda=-4 \pm 3 i$, because the time dependence of the solution comes from $e^{\lambda t}=e^{(\mu+\nu) t}=$ $e^{\mu t}(\cos (\nu t)+i \sin (\nu t))$. We may then guess that \mathbf{x} is the real or imaginary part of $\mathbf{v} e^{\lambda t}$, where \mathbf{v} is the corresponding eigenvector. This leads us to conclude that $\mathbf{v}=\binom{1}{1+2 i}$, if \mathbf{x} is the real part, or $\mathbf{v}=\binom{i}{-2+i}$, if \mathbf{x} is the imaginary part.

