6. [15 points] In lab 1 we considered the Gompertz equation, \(y' = ry \ln(K/y) \). We explore this further in this problem.

a. [5 points] Consider the initial condition \(y(0) = 1 \). Find a linear approximation to the Gompertz equation that is valid near this initial condition. Under what conditions would you expect your approximation to be accurate?

Solution: Noting that \(y' = ry(\ln(K) - \ln(y)) \), we can use the Taylor expansion of \(\ln(y) = 0 + (y - 1) + \cdots \) to linearize the equation. To retain only linear terms, we truncate the log at the constant term 0, and so have \(y' = r \ln(K) \). This is a reasonable approximation, though a little bit of a fudge as we haven’t expanded the \(y \) term in the equation.

If we are slightly more careful, we also expand the linear term \(y \) as \(y = 1 + (y - 1) \). Then \(y' = r(1 + (y - 1))(\ln(K) - (0 + (y - 1))) \). To retain only terms in \((y - 1)^0\) or \((y - 1)^1\) we must truncate the expansion of the logarithm at the constant (0) term, so that \(y' = r(1 + (y - 1))(\ln(K)) = r \ln(K) \). This retains a constant term \(r \) because \(y = 1 \) isn’t a critical point of the equation.

In any case, this is valid when \(y \) is near 1, and as \(y \) moves away from that we would expect the approximation to rapidly get worse.

b. [5 points] We found that for \(y \) near \(K \), the Gompertz equation is approximated as \(y' = -rK(y - K) \). Solve this and explain what its solution tells us about solutions to the Gompertz equation.

Solution: We solve by separation: \(y'/(y - K) = -rK \), so that \(\ln|y - K| = -rKt + C' \). Exponentiating both sides, and letting \(C = \pm e^{C'} \), we have \(y = K + Ce^{-rKt} \). This says that if we start with an initial condition near \(y = K \), we expect the solution to converge to \(y = K \): that is, the equilibrium solution \(y = K \) is asymptotically stable.

c. [5 points] If we retain two terms from the Taylor expansion of \(\ln(K/y) \) near \(y = K \), we obtain the cubic differential equation \(y' = f(y) \), where \(f(y) \) is shown in the figure to the right. Sketch a phase line for this equation and explain what it suggests about the long-term behavior of the tumor.

Solution: Designating the critical point above \(y = K \) as \(y = y_1 \), we have the phase line shown below.

This suggests that for any initial condition \(y(0) = y_0 \) with \(0 < y_0 < y_1 \), the solution will converge to \(y = K \) as \(t \to \infty \). However, if \(y_0 > y_1 \), the solution becomes unbounded as \(t \to \infty \).