6. [15 points] In lab 1 we considered the Gompertz equation, $y^{\prime}=r y \ln (K / y)$. We explore this further in this problem.
a. [5 points] Consider the initial condition $y(0)=1$. Find a linear approximation to the Gompertz equation that is valid near this initial condition. Under what conditions would you expect your approximation to be accurate?
Solution: Noting that $y^{\prime}=r y(\ln (K)-\ln (y))$, we can use the Taylor expansion of $\ln (y)=0+(y-1)+\cdots$ to linearize the equation. To retain only linear terms, we truncate the \log at the constant term 0 , and so have $y^{\prime}=r \ln (K) y$. This is a reasonable approximation, though a little bit of a fudge as we haven't expanded the y term in the equation.

If we are slightly more careful, we also expand the linear term y as $y=1+(y-1)$. Then $y^{\prime}=r(1+(y-1))(\ln (K)-(0+(y-1)))$. To retain only terms in $(y-1)^{0}$ or $(y-1)^{1}$ we must truncate the expansion of the logarithm at the constant (0) term, so that $y^{\prime}=r(1+(y-1))(\ln (K))=r \ln (K) y$.

Alternately, if we expand the expression and then retain only linear terms in y, we obtain $y^{\prime}=r \ln (K)+r \ln (K)(y-1)-r(1)(y-1)=r(\ln (K)-1) y+r$. This retains a constant term r because $y=1$ isn't a critical point of the equation.

In any case, this is valid when y is near 1 , and as y moves away from that we would expect the approximation to rapidly get worse.
b. [5 points] We found that for y near K, the Gompertz equation is approximated as $y^{\prime}=$ $-r K(y-K)$. Solve this and explain what its solution tells us about solutions to the Gompertz equation.
Solution: We solve by separation: $y^{\prime} /(y-K)=-r K$, so that $\ln |y-K|=-r K t+C^{\prime}$. Exponentiating both sides, and letting $C= \pm e^{C^{\prime}}$, we have $y=K+C e^{-r K t}$. This says that if we start with an initial condition near $y=K$, we expect the solution to converge to $y=K$: that is, the equilibrium solution $y=K$ is asymptotically stable.
c. [5 points] If we retain two terms from the Taylor expansion of $\ln (K / y)$ near $y=K$, we obtain the cubic differential equation $y^{\prime}=f(y)$, where $f(y)$ is shown in the figure to the right. Sketch a phase line for this equation and explain what it suggests about the long-term behavior of the tumor.
Solution: Designating the critical point above $y=K$ as $y=y_{1}$, we have the phase line shown below.

This suggests that for any initial condition $y(0)=y_{0}$ with $0<y_{0}<y_{1}$, the solution will converge to $y=K$
 as $t \rightarrow \infty$. However, if $y_{0}>y_{1}$, the solution becomes unbounded as $t \rightarrow \infty$.

