7. [12 points] For each of the following, give an example as indicated, and a short (one or two sentence) explanation for how your example satisfies the indicated criteria.
a. [4 points] Give an example of an autonomous first-order differential equation with two equilibrium solutions, neither of which are stable.
Solution: An example is $y^{\prime}=y^{2}(1-y)^{2}$. It has the two equilibrium solutions $y=0$ and $y=1$, but for all $y \neq 0,1, y^{\prime}>0$. Thus neither is stable.
b. [4 points] Give an example of a linear, constant-coefficient system of two differential equations whose phase portrait is a stable counterclockwise spiral.
Solution: An example is $\mathbf{x}^{\prime}=\left(\begin{array}{cc}-1 & -2 \\ 2 & -1\end{array}\right) \mathbf{x}$. We see that the eigenvalues are $\lambda=-1 \pm 2 i$, so we have a stable spiral. To check that it is counterclockwise, we consider the direction of the trajectory at $(1,0)$, where $\mathbf{x}^{\prime}=\left(\begin{array}{cc}-1 & -2 \\ 2 & -1\end{array}\right)\binom{1}{0}=\binom{-1}{2}$, that is, to the left and up, giving a counterclockwise spiral.
c. [4 points] Give an example of a linear, constant-coefficient system of two differential equations that has a critical point that is not at the origin.
Solution: All we need is that the system have a forcing, e.g., $\mathrm{x}^{\prime}=\left(\begin{array}{cc}-1 & 2 \\ -2 & -1\end{array}\right) \mathbf{x}+\binom{1}{3}$. The critical point of this is at $(1,-1)$.
