7. [15 points] The figure to the right shows two (hypothetical) skydivers, with a spring connecting them. We assume that the mass of the first, m_{1}, is less than the mass of the second, m_{2}. The distances that each has fallen are x_{1} and x_{2}, and the spring constant is k. Let L be the equilibrium length of the spring. Then the system is modeled as

$$
\begin{aligned}
& x_{1}^{\prime \prime}=\frac{k}{m_{1}}\left(-x_{1}+x_{2}\right)+\left(g-\frac{k L}{m_{1}}\right) \\
& x_{2}^{\prime \prime}=\frac{k}{m_{2}}\left(x_{1}-x_{2}\right)+\left(g+\frac{k L}{m_{2}}\right) .
\end{aligned}
$$

a. [3 points] If we write this as a matrix equation $\mathbf{x}^{\prime \prime}=\mathbf{A x}+\mathbf{f}$, what are \mathbf{x}, \mathbf{A} and \mathbf{f} ?
b. [4 points] Now suppose that we're interested in finding the solution to the homogeneous problem associated with this system. If we take $\mathbf{x}=\mathbf{v} e^{\omega t}$, what equation must \mathbf{v} and ω satisfy? How are \mathbf{v} and ω related to the matrix \mathbf{A} that you found above?
c. [8 points] Now suppose that the eigenvalues and eigenvectors of the matrix \mathbf{A} you found in (a) are $\lambda_{1}=0$, with $\mathbf{v}_{1}=\binom{1}{1}$ and $\lambda_{2}=-4$ with $\mathbf{v}_{2}=\binom{3}{1}$. Write the complementary homogeneous solution to your system.

