4. [12 points] Consider the differential equation $x^{\prime \prime}+a x^{\prime}+b x=$ $A_{0} \cos (\omega t)$, modeling dispacement x of the mass in the massspring system shown to the right. In this equation, a, b, A_{0} and ω are constant parameters.
a. [6 points] If a representative graph of x as a function of time t is shown in the figure to the right, can you determine if any of a, b, A_{0} or ω must be zero or must be non-zero? Must any of a, b, A_{0} or ω be related in any way? Can you tell what value any of them must have?
Solution: This figure shows resonance, so we know $a=0$, $b=\omega^{2}$ and $A_{0} \neq 0$. We are unable to tell any specific values for these.
b. [6 points] If a representative graph of x as a function of time t is shown in the figure to the right, can you determine if any of a, b, A_{0} or ω must be zero or must be non-zero? Must any of a, b, A_{0} or ω be related in any way? Can you tell what value any of them must have?

Solution: This figure shows a transient motion followed by a steady-state oscillation, so we know $a, b>0$ and $A_{0} \neq 0$. The frequency ω determines the period of the steady state oscillation, so $\omega=2$.

