7. [15 points] The figure to the right shows two (hypothetical) skydivers, with a spring connecting them. We assume that the mass of the first, m_{1}, is less than the mass of the second, m_{2}. The distances that each has fallen are x_{1} and x_{2}, and the spring constant is k. Let L be the equilibrium length of the spring. Then the system is modeled as

$$
\begin{gathered}
x_{1}^{\prime \prime}=\frac{k}{m_{1}}\left(-x_{1}+x_{2}\right)+\left(g-\frac{k L}{m_{1}}\right) \\
x_{2}^{\prime \prime}=\frac{k}{m_{2}}\left(x_{1}-x_{2}\right)+\left(g+\frac{k L}{m_{2}}\right) .
\end{gathered}
$$

a. [3 points] If we write this as a matrix equation $\mathbf{x}^{\prime \prime}=\mathbf{A x}+\mathbf{f}$, what are \mathbf{x}, \mathbf{A} and \mathbf{f} ?
Solution: These are

$$
\mathbf{x}=\binom{x_{1}}{x_{2}}, \quad \mathbf{A}=\left(\begin{array}{cc}
-k / m_{1} & k / m_{1} \\
k / m_{2} & -k / m_{2}
\end{array}\right), \quad \text { and } \quad \mathbf{f}=\binom{g-k L / m_{1}}{g+k L / m_{2}} .
$$

b. [4 points] Now suppose that we're interested in finding the solution to the homogeneous problem associated with this system. If we take $\mathbf{x}=\mathbf{v} e^{\omega t}$, what equation must \mathbf{v} and ω satisfy? How are \mathbf{v} and ω related to the matrix \mathbf{A} that you found above?
Solution: Plugging $\mathbf{x}=\mathbf{v} e^{\omega t}$ into the homogeneous problem $\mathbf{x}^{\prime \prime}=\mathbf{A} \mathbf{x}$, we get $\omega^{2} \mathbf{v} e^{\omega t}=$ $\mathbf{A} \mathbf{v} e^{\omega t}$. We may divide out the exponential to obtain $\omega^{2} \mathbf{v}=\mathbf{A} \mathbf{v}$, so that $\omega^{2}=\lambda$, the eigenvalues of \mathbf{A}, and \mathbf{v} are the corresponding eigenvectors.
c. [8 points] Now suppose that the eigenvalues and eigenvectors of the matrix \mathbf{A} you found in (a) are $\lambda_{1}=0$, with $\mathbf{v}_{1}=\binom{1}{1}$ and $\lambda_{2}=-4$ with $\mathbf{v}_{2}=\binom{3}{1}$. Write the complementary homogeneous solution to your system.
Solution: From the work above, if $\lambda=0$ we know that $\omega=0$ (twice), and we get the two solutions $\mathbf{x}_{1}=\mathbf{v}_{1}$ and $\mathbf{x}_{2}=\mathbf{v}_{1} t$. If $\lambda=-4$ we have $\omega= \pm 2 i$, so that we gain the two additional solutions $\mathbf{x}_{3}=\mathbf{v}_{2} \cos (2 t)$ and $\mathbf{x}_{4}=\mathbf{v}_{2} \sin (2 t)$. The general solution is therefore

$$
\mathbf{x}=\left(c_{1}+c_{2} t\right)\binom{1}{1}+\left(c_{3} \cos (2 t)+c_{4} \sin (2 t)\right)\binom{3}{1} .
$$

