7. [15 points] The figure to the right shows two (hypothetical) skydivers, with a spring connecting them. We assume that the mass of the first, m_1 , is less than the mass of the second, m_2 . The distances that each has fallen are x_1 and x_2 , and the spring constant is k. Let L be the equilibrium length of the spring. Then the system is modeled as

$$x_1'' = \frac{k}{m_1} (-x_1 + x_2) + \left(g - \frac{kL}{m_1} \right)$$
$$x_2'' = \frac{k}{m_2} (x_1 - x_2) + \left(g + \frac{kL}{m_2} \right).$$

a. [3 points] If we write this as a matrix equation $\mathbf{x}'' = \mathbf{A}\mathbf{x} + \mathbf{f}$, what are \mathbf{x} , \mathbf{A} and \mathbf{f} ?

Solution: These are

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \quad \mathbf{A} = \begin{pmatrix} -k/m_1 & k/m_1 \\ k/m_2 & -k/m_2 \end{pmatrix}, \quad \text{and} \quad \mathbf{f} = \begin{pmatrix} g - kL/m_1 \\ g + kL/m_2 \end{pmatrix}.$$

b. [4 points] Now suppose that we're interested in finding the solution to the homogeneous problem associated with this system. If we take $\mathbf{x} = \mathbf{v}e^{\omega t}$, what equation must \mathbf{v} and ω satisfy? How are \mathbf{v} and ω related to the matrix \mathbf{A} that you found above?

Solution: Plugging $\mathbf{x} = \mathbf{v}e^{\omega t}$ into the homogeneous problem $\mathbf{x}'' = \mathbf{A}\mathbf{x}$, we get $\omega^2 \mathbf{v}e^{\omega t} = \mathbf{A}\mathbf{v}e^{\omega t}$. We may divide out the exponential to obtain $\omega^2 \mathbf{v} = \mathbf{A}\mathbf{v}$, so that $\omega^2 = \lambda$, the eigenvalues of \mathbf{A} , and \mathbf{v} are the corresponding eigenvectors.

c. [8 points] Now suppose that the eigenvalues and eigenvectors of the matrix **A** you found in (a) are $\lambda_1 = 0$, with $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\lambda_2 = -4$ with $\mathbf{v}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$. Write the complementary homogeneous solution to your system.

Solution: From the work above, if $\lambda = 0$ we know that $\omega = 0$ (twice), and we get the two solutions $\mathbf{x}_1 = \mathbf{v}_1$ and $\mathbf{x}_2 = \mathbf{v}_1 t$. If $\lambda = -4$ we have $\omega = \pm 2i$, so that we gain the two additional solutions $\mathbf{x}_3 = \mathbf{v}_2 \cos(2t)$ and $\mathbf{x}_4 = \mathbf{v}_2 \sin(2t)$. The general solution is therefore

$$\mathbf{x} = (c_1 + c_2 t) \begin{pmatrix} 1 \\ 1 \end{pmatrix} + (c_3 \cos(2t) + c_4 \sin(2t)) \begin{pmatrix} 3 \\ 1 \end{pmatrix}.$$