3. [15 points] A chemical reaction with two reagents (chemicals) in amounts r_{1} and r_{2} that may be converted from one to the other may be modeled the system of first-order differential equations

$$
\begin{aligned}
r_{1}^{\prime} & =-3 r_{1}+9 r_{2} \\
r_{2}^{\prime} & =k r_{1}-r_{2}+f(t),
\end{aligned}
$$

where $f(t)$ is the rate at which the second reagent is being added to the reaction and k is a constant.
a. [5 points] Write down the second-order linear equation which has r_{1} as its solution.
b. [5 points] If $f(t)=\cos (\omega t)$ is the dashed curve in the figure below, for what values of k, if any, could the long-term behavior of r_{1} be that shown by the solid curve? Explain your answer.

c. [5 points] If $f(t)=A_{0}$, a constant, for what values of k, if any, could the phase portrait for this system be similar to that shown in the figure below? Explain your answer.

