7. [14 points] Recall the linearized version of our laser model,

$$
\begin{aligned}
u^{\prime} & =-\gamma(A u+v) \\
v^{\prime} & =(A-1) u .
\end{aligned}
$$

Consider the case of constant forcing ($A=$ a constant) and the initial conditions $u(0)=u_{0}$, $v(0)=0$.
a. [6 points] Find a system of algebraic equations for $U(s)=\mathcal{L}\{u(t)\}$ and $V(s)=\mathcal{L}\{v(t)\}$.
b. [4 points] Solve your system from (a) to find $U(s)$ and $V(s)$. (If you are unable to solve (a), consider the system ($s+a) U+b V=u_{0},-c U+(s+a) V=0$.)
c. [4 points] Recall that in the lab we solved the characteristic equation $\lambda^{2}+\gamma A \lambda+\gamma(A-1)=$ 0 , finding $\lambda^{2}+\gamma A \lambda+\gamma(A-1)=\left(\lambda+\frac{1}{2} \lambda A\right)^{2}+\left(-\frac{1}{4} \gamma^{2} A^{2}+\gamma(A-1)\right)=(\lambda+\mu)^{2}+\nu^{2}=0$ (so that $\lambda=-\mu \pm i \nu)$. Use this to rewrite your solutions in (b) in terms of μ and ν. Find $u(t)=\mathcal{L}^{-1}\{U(s)\}$ and $v(t)=\mathcal{L}^{-1}\{V(s)\}$ in terms of μ and ν.
(If you are stuck, assume the denominator of your U and V is of the form $(s+a)^{2}+b^{2}$.)

