1. [16 points] Find real-valued solutions for each of the following, as indicated. (Note that minimal partial credit will be given on this problem.)
a. [8 points] Find the general solution to $y^{\prime \prime}+4 y^{\prime}+13 y=26 t$.

Solution: The general solution will be $y=y_{c}+y_{p}$, where y_{c} solves the complementary homogenous problem and y_{p} is a particular solutions. For y_{c} we guess $y=e^{\lambda t}$, so that $\lambda^{2}+4 \lambda+13=(\lambda+2)^{2}+9=0$, and $\lambda=-2 \pm 3 i$. Thus $y_{c}=c_{1} e^{-2 t} \cos (3 t)+c_{2} e^{-2 t} \sin (3 t)$. For y_{p} we use the method of undetermined coefficients, taking $y_{p}=A t+B$. Plugging in, we have

$$
0+8 A+13 A t+13 B=26 t,
$$

so that $A=2$ and $B=-8 / 13$. Thus the general solution is

$$
y=c_{1} e^{-2 t} \cos (3 t)+c_{2} e^{-2 t} \sin (3 t)+2 t-\frac{8}{13} .
$$

b. $[8$ points $]$ Solve $y^{\prime \prime}+6 y^{\prime}+8 y=e^{-2 t}, y(0)=0, y^{\prime}(0)=0$.

Solution: Again, with $y=e^{\lambda t}$, we have $\lambda^{2}+6 \lambda+8=(\lambda+2)(\lambda+4)=0$, so that $y_{c}=c_{1} e^{-2 t}+c_{2} e^{-4 t}$. Our guess for y_{p} is then $y_{p}=A t e^{-2 t}$ (where we have to multiply by t because the forcing appears in the complementary homogeneous solution). The derivatives of y_{p} are $y_{p}^{\prime}=A e^{-2 t}-2 A t e^{-2 t}$ and $y_{p}^{\prime \prime}=-4 A e^{-2 t}+4 A t e^{-2 t}$. Plugging in, we have

$$
\left(-4 A e^{-2 t}+4 A t e^{-2 t}\right)+\left(6 A e^{-2 t}-12 A t e^{-2 t}\right)+8 A t e^{-2 t}=2 A e^{-2 t}=e^{-2 t},
$$

so that $A=\frac{1}{2}$. Thus the general solution is

$$
y=c_{1} e^{-2 t}+c_{2} e^{-4 t}+\frac{1}{2} t e^{-2 t} .
$$

Plugging in the initial conditions, $y(0)=c_{1}+c_{2}=0$, and $y^{\prime}(0)=-2 c_{1}-4 c_{2}+\frac{1}{2}=0$. Thus $c_{1}=-c_{2}$, so that $c_{2}=\frac{1}{4}$ and $c_{1}=-\frac{1}{4}$, and $y=-\frac{1}{4} e^{-2 t}+\frac{1}{4} e^{-4 t}+\frac{1}{2} t e^{-2 t}$.

