2. [14 points] Find each of the following. (Note that minimal partial credit will be given on this problem.)
a. [7 points $] \mathcal{L}\{f(t)\}$, if $f(t)= \begin{cases}1-t, & 0 \leq t<1 \\ 0, & \text { otherwise }\end{cases}$

Solution: Note that $f(t)=(1-t)\left(1-u_{1}(t)\right)=-(t-1)+(t-1) u_{1}(t)$. From our table of transforms, we note that $\mathcal{L}\{t\}=\frac{1}{s^{2}}$ and $\mathcal{L}\{(t-1)\}=\frac{1}{s^{2}}-\frac{1}{s}$. Thus

$$
\mathcal{L}\{f(t)\}=-\left(\frac{1}{s^{2}}-\frac{1}{s}\right)+\frac{1}{s^{2}} e^{-s}=\frac{1}{s}+\frac{1}{s^{2}}\left(e^{-s}-1\right) .
$$

Alternately, we can find this by direct integration:

$$
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{1}(1-t) e^{-s t} d t=-\left.\frac{1}{s} e^{-s t}\right|_{t=0} ^{t=1}-\int_{0}^{1} t e^{-s t} d t .
$$

The remaining integral we complete by parts with $u=t$ and $v^{\prime}=e^{-s t}$, so that $\int t e^{-s t} d t=$ $-\frac{1}{s} t e^{-s t}+\int \frac{1}{s} e^{-s t} d t=-\frac{1}{s} t e^{-s t}-\frac{1}{s^{2}} e^{-s t}$. Thus

$$
\mathcal{L}\{f(t)\}=\left.\left(-\frac{1}{s} e^{-s t}+\frac{1}{s} t e^{-s t}+\frac{1}{s^{2}} e^{-s t}\right)\right|_{t=0} ^{t=1}=\frac{1}{s}+\frac{1}{s^{2}}\left(e^{-s}-1\right) .
$$

b. [7 points] $Y(s)=\mathcal{L}\{y(t)\}$, if $y^{\prime \prime}+9 y=u_{\pi}(t) \cos (4(t-\pi)), y(0)=1, y^{\prime}(0)=2$.

Solution: Transforming, we have $\mathcal{L}\left\{y^{\prime \prime}+9 y\right\}=\mathcal{L}\left\{u_{\pi}(t) \cos (4(t-\pi))\right\}$, so that

$$
s^{2} Y-s-2+9 Y=\frac{s e^{-\pi s}}{s^{2}+16},
$$

and

$$
Y=\frac{s+2}{s^{2}+9}+\frac{s e^{-\pi s}}{\left(s^{2}+9\right)\left(s^{2}+16\right)}
$$

