3. [15 points] A chemical reaction with two reagents (chemicals) in amounts r_{1} and r_{2} that may be converted from one to the other may be modeled the system of first-order differential equations

$$
\begin{aligned}
& r_{1}^{\prime}=-3 r_{1}+9 r_{2} \\
& r_{2}^{\prime}=k r_{1}-r_{2}+f(t),
\end{aligned}
$$

where $f(t)$ is the rate at which the second reagent is being added to the reaction and k is a constant.
a. [5 points] Write down the second-order linear equation which has r_{1} as its solution.

Solution: From the first equation in the system, we have $r_{2}=\frac{1}{9} r_{1}^{\prime}+\frac{1}{3} r_{1}$, so that $r_{2}^{\prime}=\frac{1}{9} r_{1}^{\prime \prime}+\frac{1}{3} r_{1}^{\prime}$. Plugging into the second equation, we have

$$
\frac{1}{9} r_{1}^{\prime \prime}+\frac{1}{3} r_{1}^{\prime}=k r_{1}-\frac{1}{9} r_{1}^{\prime}-\frac{1}{3} r_{1}+f(t), \quad \text { or } \quad r_{1}^{\prime \prime}+4 r_{1}^{\prime}+(3-9 k) r_{1}=f(t) .
$$

b. [5 points] If $f(t)=\cos (\omega t)$ is the dashed curve in the figure below, for what values of k, if any, could the long-term behavior of r_{1} be that shown by the solid curve? Explain your answer.
Solution: The solution for r_{1} will be of the form $r_{1}=r_{c}+r_{p}$, where $r_{p}=R \cos (\omega t-\delta)$. Thus, for this to be the long-term solution we must have $r_{c} \rightarrow 0$. This will be the case when the roots of the characteristic polynomial have negative real
 parts. The characteristic equation is $\lambda^{2}+4 \lambda+(3-9 k)=$ $(\lambda+2)^{2}+(-1-9 k)=0$, for which $\lambda=-2 \pm \sqrt{1+9 k}$. Thus we need $1+9 k<4$, or $k<1 / 3$, for the real part of λ to be negative.
c. [5 points] If $f(t)=A_{0}$, a constant, for what values of k, if any, could the phase portrait for this system be similar to that shown in the figure below? Explain your answer.
Solution: Here we need the characteristic equation to have two negative, real roots. Thus we need $0<1+9 k<4$, so $-\frac{1}{9}<k<\frac{1}{3}$.

