4. [13 points] Consider the RLC circuit shown to the right, below. This is modeled by $y^{\prime \prime}+k y^{\prime}+$ $2 y=g(t)$, where $g(t)$ is the derivative of the input voltage and $0<k<2 \sqrt{2}$ is proportional to the resistance of the resistor.
a. [9 points] If $g(t)=4 \cos (t)$, find the steady state response to the input. Write your answer in the form $R \cos (t-\alpha)$.

Solution: The steady state response will be the particular solution to
 the problem. Using the method of undetermined coefficients, let $y_{p}=$ $A \cos t+B \sin t$. Then, plugging in and collecting terms in $\cos t$ and $\sin t$, we have

$$
-A+B k+2 A=4, \quad \text { and } \quad-B-A k+2 B=0,
$$

These are $A+B k=4,-A k+B=0$. Solving by taking k times the first and adding, we have $\left(k^{2}+1\right) B=4 k$, so that $B=\frac{4 k}{k^{2}+1}$. Then $A=\frac{4}{k^{2}+1}$. These are both positive, so in phase amplitude form we have

$$
y_{p}=\sqrt{A^{2}+B^{2}} \cos (t-\arctan (B / A))=\frac{4}{\sqrt{k^{2}+1}} \cos (t-\arctan (k)) .
$$

b. [4 points] The amplitude of the steady state response to the forcing $g(t)=4 \cos (\omega t)$ is shown below, as a function of ω. What is the value of k in the equation? Why?

Solution: The expression for R above is for $\omega=1$, so $\frac{4}{\sqrt{k^{2}+1}}=2$, where we have read the value for R from the figure. This gives $\sqrt{k^{2}+1}=2$, so $k^{2}+1=$ 4 and $k= \pm \sqrt{3}$. Given that it is an RLC circuit we can discard the negative value, taking $k=\sqrt{3}$.

