5. [14 points] For the first two of the following, identify each as true or false, by circling "True" or "False" as appropriate, and provide a short (one sentence) explanation indicating why you selected that answer. For the last give a short answer explaining the indicated question.
a. [4 points] For some constant ω and k, a solution to the mechanical system $y^{\prime \prime}+2 y^{\prime}+k y=$ $\cos (\omega t)$ could be that shown to the right.

Solution: This cannot be true; the forcing requires that the steady state solution be sinusoidal, and centered on the t-axis.

b. [4 points] Let $F(s)=\frac{s^{2}+1}{s^{2}+3 s+5}$. There is some piecewise continuous function $f(t)$, of exponential order, for which $\mathcal{L}\{f(t)\}=F(s)$.

True
False
Solution: This is false, because $F(s) \rightarrow 1 \neq 0$ as $s \rightarrow \infty$. We know that all transforms of regular functions must go to zero as $s \rightarrow \infty$.
c. [6 points] Your friends Anna and Andrew are solving the two problems $y^{\prime \prime}+0.1 y^{\prime}+y=0$, $y(0)=0, y^{\prime}(0)=1$ and $z^{\prime \prime}+0.1 z^{\prime}+z=\delta(t-3), z(0)=0, z^{\prime}(0)=0$. Anna thinks that $z(t)=y(t-3)$, while Andrew thinks they are different. Explain why they are both partly correct.

Solution: Note that the transforms of these problems give $Y=1 /\left(s^{2}+0.1 s+1\right)$ and $Z=e^{-3 s} /\left(s^{2}+0.1 s+1\right)$. Thus we know that $z(t)=y(t-3) u_{3}(t)$. The two are the same, with the ambiguity of the value of the derivative at $t=3$-because z has the step function there the value of z^{\prime} at $t=3$ is not uniquely determined.

