6. [14 points] Find solutions to each of the following, as indicated.
a. [7 points] Find the general solution to $y^{\prime \prime}+y^{\prime}=\frac{1}{1+e^{t}}$. (Hint: $\int \frac{1}{1+e^{t}} d t=t-\ln \left(1+e^{t}\right)$.)

Solution: Solutions to the homogeneous problem are $y_{1}=1$ and $y_{2}=e^{-t}$. We cannot here use the method of undetermined coefficients, and so use variation of parameters instead. Let $y_{p}=u_{1}+u_{2} e^{-t}$. Then

$$
u_{1}^{\prime}+u_{2}^{\prime} e^{-t}=0 \quad \text { and } \quad-u_{2}^{\prime} e^{-t}=\frac{1}{1+e^{t}} .
$$

The second equation gives $u_{2}^{\prime}=-e^{t}\left(1+e^{t}\right)^{-1}$, so that $u_{2}=-\ln \left(1+e^{t}\right)$. The first then gives $u_{1}^{\prime}=-u_{2}^{\prime} e^{-t}=1 /\left(1+e^{t}\right)$. Following the hint, $u_{1}=t-\ln \left(1+e^{t}\right)$. Thus the general solution is

$$
y=c_{1}+c_{2} e^{-t}+\left(t-\ln \left(1+e^{t}\right)\right)-e^{-t} \ln \left(1+e^{t}\right)
$$

b. [7 points] Find the solution to $y^{\prime \prime}-y^{\prime}=u_{2}(t)-u_{3}(t), y(0)=0, y^{\prime}(0)=0$

Solution: We use Laplace transforms: transforming both sides of the equation, we have

$$
s^{2} Y-s Y=\frac{1}{s}\left(e^{-2 s}-e^{-3 s}\right), \quad \text { so } \quad Y=\frac{1}{s^{2}(s-1)}\left(e^{-2 s}-e^{-3 s}\right) .
$$

To find the inverse transform of this, we first apply partial fractions to the rational function. Letting $\frac{1}{s^{2}(s-1)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s-1}$, we have after clearing the denominator

$$
1=A s(s-1)+B(s-1)+C s^{2} .
$$

Setting $s=0$, we have $B=-1$. If $s=1$ we get $C=1$. Finally, with $s=-1$, $1=2 A+2+1$, so that $A=-1$. Thus

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{1}{s^{2}(s-1)}\right\} & =-\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\} \\
& =-1-t+e^{t}=f(t) .
\end{aligned}
$$

Thus, including the exponentials to get the expected step functions, we have

$$
y=\mathcal{L}^{-1}\{Y\}=f(t-2) u_{2}(t)-f(t-3) u_{3}(t) .
$$

