7. [14 points] Recall the linearized version of our laser model,

$$
\begin{aligned}
u^{\prime} & =-\gamma(A u+v) \\
v^{\prime} & =(A-1) u .
\end{aligned}
$$

Consider the case of constant forcing ($A=$ a constant) and the initial conditions $u(0)=u_{0}$, $v(0)=0$.
a. [6 points] Find a system of algebraic equations for $U(s)=\mathcal{L}\{u(t)\}$ and $V(s)=\mathcal{L}\{v(t)\}$.

Solution: Transforming both sides of the system, we have

$$
\begin{aligned}
s U-u_{0} & =-\gamma A U-\gamma V \\
s V-0 & =(A-1) U,
\end{aligned}
$$

or

$$
\begin{aligned}
(s+\gamma A) U+\gamma V & =u_{0} \\
-(A-1) U+s V & =0 .
\end{aligned}
$$

b. [4 points] Solve your system from (a) to find $U(s)$ and $V(s)$. (If you are unable to solve (a), consider the system $(s+a) U+b V=u_{0},-c U+(s+a) V=0$.)

Solution: Note that we have $V=\frac{A-1}{s} U$ from the second equation. Plugging this into the first, we have

$$
(s+\gamma A) U+\frac{\gamma(A-1)}{s} U=\frac{s^{2}+\gamma A s+\gamma(A-1)}{s} U=u_{0},
$$

so that $U=\frac{s u_{0}}{s^{2}+\gamma A s+\gamma(A-1)}$. Plugging this in for V, we have $V=\frac{(A-1) u_{0}}{s^{2}+\gamma A s+\gamma(A-1)}$.
With the alternate system, we have $U=\frac{s+a}{c} V$, so that $\left((s+a)^{2}+b c\right) V=u_{0} c$, or $V=\frac{u_{0} c}{(s+a)^{2}+b c}$, and $U=\frac{u_{0}(s+a)}{(s+a)^{2}+b c}$.
c. [4 points] Recall that in the lab we solved the characteristic equation $\lambda^{2}+\gamma A \lambda+\gamma(A-1)=$ 0 , finding $\lambda^{2}+\gamma A \lambda+\gamma(A-1)=\left(\lambda+\frac{1}{2} \lambda A\right)^{2}+\left(-\frac{1}{4} \gamma^{2} A^{2}+\gamma(A-1)\right)=(\lambda+\mu)^{2}+\nu^{2}=0$ (so that $\lambda=-\mu \pm i \nu)$. Use this to rewrite your solutions in (b) in terms of μ and ν. Find $u(t)=\mathcal{L}^{-1}\{U(s)\}$ and $v(t)=\mathcal{L}^{-1}\{V(s)\}$ in terms of μ and ν.
(If you are stuck, assume the denominator of your U and V is of the form $(s+a)^{2}+b^{2}$.)
Solution: We have

$$
U=\frac{s u_{0}}{(s+\mu)^{2}+\nu^{2}}=\frac{(s+\mu) u_{0}}{(s+\mu)^{2}+\nu^{2}}-\frac{\mu u_{0}}{(s+\mu)^{2}+\nu^{2}}, \quad V=\frac{(A-1) u_{0}}{(s+\mu)^{2}+\nu^{2}} .
$$

Inverting these, we have

$$
u(t)=u_{0} e^{-\mu t} \cos (\nu t)-\frac{u_{0}}{\nu} e^{-\mu t} \sin (\nu t), \quad v(t)=\frac{(A-1)}{\nu} u_{0} e^{-\mu t} \sin (\nu t) .
$$

