- **2.** [12 points] The following problems consider a non-homogeneous second-order linear differential equation L[y] = g(t). Suppose that y_1 and y_2 are solutions to this equation, and that y_3 , y_4 , and y_5 are solutions to the complementary homogeneous problem L[y] = 0.
 - **a**. [3 points] Can you say what problem each of the following solve? If so, indicate what it is; if not, write "none." (No explanation necessary.)

i. $y_1 - y_2$

ii. $y_1 - y_3$

- iii. $y_1 + y_2 + y_3 + y_4 + y_5$
- **b**. [3 points] Explain how you are able to determine your answers in (a), or why it is not possible to tell.

- c. [6 points] The following statements are not guaranteed to be true. Explain why.
 - i. The solution to the initial problem L[y] = 0, $y(0) = y_0$, $y'(0) = v_0$ (for any y_0 and v_0) can be written as $y = c_1y_3 + c_2y_4 + c_3y_5$ for some c_1 , c_2 , and/or c_3 (where one or more of c_1 , c_2 , and c_3 may be zero).
 - ii. Because both y_1 and y_2 satisfy L[y] = g(t), we must have $y_1 = y_2$.