2. [12 points] The following problems consider a non-homogeneous second-order linear differential equation $L[y]=g(t)$. Suppose that y_{1} and y_{2} are solutions to this equation, and that y_{3}, y_{4}, and y_{5} are solutions to the complementary homogeneous problem $L[y]=0$.
a. [3 points] Can you say what problem each of the following solve? If so, indicate what it is; if not, write "none." (No explanation necessary.)
i. $y_{1}-y_{2}$
ii. $y_{1}-y_{3}$
iii. $y_{1}+y_{2}+y_{3}+y_{4}+y_{5}$
b. [3 points] Explain how you are able to determine your answers in (a), or why it is not possible to tell.
c. [6 points] The following statements are not guaranteed to be true. Explain why.
i. The solution to the initial problem $L[y]=0, y(0)=y_{0}, y^{\prime}(0)=v_{0}$ (for any y_{0} and v_{0}) can be written as $y=c_{1} y_{3}+c_{2} y_{4}+c_{3} y_{5}$ for some c_{1}, c_{2}, and/or c_{3} (where one or more of c_{1}, c_{2}, and c_{3} may be zero).
ii. Because both y_{1} and y_{2} satisfy $L[y]=g(t)$, we must have $y_{1}=y_{2}$.
