4. [14 points] Recall that the nonlinear model for the number of photons P and population inversion N in a ruby laser that we considered in lab 3 had an equilibrium point $(P, N)=(1, A-$ $1)$. If we assume that $A=A_{0}+a \cos (\omega t)$, with a a very small value, the dynamics of the system near the equilibrium point are modeled by the linear system $u^{\prime}=-\gamma(A u+v)+\gamma a \cos (\omega t)$, $v^{\prime}=(A-1) u$
a. [4 points] Rewrite this linear system as a second order equation in v.
b. [6 points] Suppose that the second order equation you obtain in (a) is $v^{\prime \prime}+2 v^{\prime}+v=\cos (\omega t)$, so that the solution to the complementary homogeneous problem is $v_{c}=c_{1} e^{-t}+c_{2} t e^{-t}$. Set up the solution for v_{p} using variation of parameters, and solve them to obtain explicit equations for u_{1}^{\prime} and u_{2}^{\prime} in terms of t only. (Do not solve these to find u_{1} and u_{2}.)
c. [4 points] It turns out that, for some A and $B, v_{p}=A \cos (\omega t)+B \sin (\omega t)$. Representative values of A and B are given for different values of ω in the table below. Does the system exhibit resonance? Write the response v_{p} to a forcing of $\cos (2 t)$ in phase-amplitude form.

$\omega=$	1	2	3	4	5
$A=$	0	-0.12	-0.08	-0.06	-0.04
$B=$	1	0.64	0.36	0.22	0.15

