1. [15 points] For each of the following, find explicit real-valued solutions as indicated.
a. [7 points] Find the solution to the initial value problem $y^{\prime \prime}+2 y^{\prime}+17 y=0, y(0)=1$, $y^{\prime}(0)=0$.

Solution: The solution will look like $y=e^{\lambda t}$. Plugging in, we have the characteristic equation $\lambda^{2}+2 \lambda+17=(\lambda+1)^{2}+16=0$. Thus $\lambda=-1 \pm 4 i$. A general solution is $y=c_{1} e^{-t} \cos (4 t)+c_{2} e^{-t} \sin (4 t)$. Applying the initial conditions, we have $c_{1}=1$, and $-1+4 c_{2}=0$, so that $c_{2}=\frac{1}{4}$. Thus the solution is

$$
y=e^{-t} \cos (4 t)+\frac{1}{4} e^{-t} \sin (4 t)
$$

We can, of course, also solve this with Laplace transforms. The forward transform gives, with $Y=\mathcal{L}\{y\}, s^{2} Y-s+2 s Y+17 Y=0$, so that $Y=\frac{s}{s^{2}+2 s+17}=\frac{(s+1)-1}{(s+1)^{2}+16}=$ $\frac{s+1}{(s+1)^{2}+16}-\frac{1}{(s+1)^{2}+16}$. The two terms invert using the rules for cosine, sine, and $F(s-c)$ to give the result above.
b. [8 points] Find the general solution to the equation $y^{\prime \prime}+5 y^{\prime}+4 y=e^{t}+8 t$.

Solution: The complementary homogeneous solution will be a linear combination of exponentials $y=e^{\lambda t}$. Plugging in, we have $\lambda^{2}+5 \lambda+4=(\lambda+4)(\lambda+1)=0$, so $\lambda=-4$ or $\lambda=-1$ and $y_{c}=c_{1} e^{-4 t}+c_{2} e^{-t}$.
To find the particular solution, consider the exponential and linear term separately. For the former, we guess $y_{p 1}=a e^{t}$, so that $(1+5+4) a e^{t}=10 e^{t}$, and $a=\frac{1}{10}$. For the latter, we guess $y_{p 2}=a_{0}+a_{1} t$, so that $5 a_{1}+4 a_{0}+4 a_{1} t=8 t$, and $a_{1}=2, a_{0}=-\frac{5}{2}$.
Thus the general solution is

$$
y=c_{1} e^{-4 t}+c_{2} e^{-t}+\frac{1}{10} e^{t}-\frac{5}{2}+2 t .
$$

