3. [15 points] For all of the following, the equations are linear, constant-coefficient, and secondorder, with the coefficient of $y^{\prime \prime}$ picked to be one.
a. [5 points] If the differential equation is nonhomogeneous and the general solution is $y=c_{1} e^{-2 t}+c_{2} e^{-3 t}+4 \cos (2 t)$, what is the differential equation?
Solution: The characteristic equation of the homogeneous problem must have roots -2 and -3 , so it is $(\lambda+2)(\lambda+3)=\lambda^{2}+5 \lambda+6$. The differential equation is therefore $y^{\prime \prime}+5 y^{\prime}+6 y=g(t)$. The particular solution is $y_{p}=4 \cos (2 t)$; plugging this in, we have $-16 \cos (2 t)-10 \sin (2 t)+24 \cos (2 t)=g(t)$, so $g(t)=8 \cos (2 t)-40 \sin (2 t)$, and the equation is

$$
\left.y^{\prime \prime}+5 y^{\prime}+6 y=8 \cos (2 t)-40 \sin (2 t)\right) .
$$

b. [5 points] If the graph to the right shows the movement of a unit mass on a spring with damping constant 2 , set in motion with an initial velocity of $1 \mathrm{~m} / \mathrm{s}$, write an initial value problem modeling the position of the mass.

Solution: From the graph we see that $y(0)=0$ and from the problem statement we know that $y^{\prime}(0)=1$.
 The solution is in the form of a decaying exponential, so the homogeneous solutions to the problem are of the form $e^{-a t} \cos (b t)$ and $e^{-a t} \sin (b t)$. The period of the oscillation is π, so $b=2$. Then we know that $y^{\prime \prime}+2 y^{\prime}+k y=0$, so that the characteristic equation is $\lambda^{2}+2 \lambda+k=(\lambda+1)^{2}+k-1=0$, which has roots $\lambda=-1 \pm i \sqrt{k-1}$. From the form of the solutions, we know $\sqrt{k-1}=2$, so $k=5$. Thus the initial value problem is

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1 .
$$

c. [5 points] Consider the (linear, constant-coefficient...) equation $L[y]=0$ and the equivalent system $\mathbf{x}^{\prime}=\mathbf{A x}$. If one solution to the equation $L[y]=0$ is $y=e^{-t}$, what is a corresponding solution to the system? If the coefficient of y in the equation is 3 , what is the differential equation?
Solution: If $y=e^{-t}$ is a solution to $L[y]=0$, then $\mathbf{x}=\left(\begin{array}{ll}e^{-t} & -e^{-t}\end{array}\right)^{T}$ is a solution to the system, so that $\mathbf{v}=\left(\begin{array}{ll}1 & -1\end{array}\right)^{T}$ is an eigenvector of \mathbf{A} with eigenvalue $\lambda=-1$. Because the system is derived from a second order equation, and given the coefficient of y is 3 , we know that $\mathbf{A}=\left(\begin{array}{cc}0 & 1 \\ -3 & k\end{array}\right)$. Then, using \mathbf{v} and $\lambda=-1$, we have $\left(\begin{array}{cc}1 & 1 \\ -3 & k+1\end{array}\right)\binom{1}{-1}=\mathbf{0}$, so $k=-4$ and the equation is

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0 .
$$

Alternately, we know $y^{\prime \prime}+a y^{\prime}+3 y=0$. Thus $\lambda^{2}+a \lambda+3=(\lambda+1)(\lambda+r)=0$, for some r. Expanding the right-hand side and matching powers of $\lambda, r+1=a$ and $r=3$. Thus $a=4$, and we obtain the equation above.

