- 4. [14 points] Recall that the nonlinear model for the number of photons P and population inversion N in a ruby laser that we considered in lab 3 had an equilibrium point (P, N) = (1, A-1). If we assume that A = A₀+a cos(ωt), with a a very small value, the dynamics of the system near the equilibrium point are modeled by the linear system u' = -γ(Au + v) + γa cos(ωt), v' = (A 1)u
 - **a**. [4 points] Rewrite this linear system as a second order equation in v.

Solution: Note that we have $u = \frac{1}{A-1}v'$ Plugging this into the first equation, we get $\frac{1}{A-1}v'' + \frac{\gamma A}{A-1}v' + \gamma v = \gamma a \cos(\omega t)$. Multiplying through by A - 1, we obtain $v'' + \gamma Av' + \gamma (A - 1)v = \gamma (A - 1)a \cos(\omega t)$.

b. [6 points] Suppose that the second order equation you obtain in (a) is $v'' + 2v' + v = \cos(\omega t)$, so that the solution to the complementary homogeneous problem is $v_c = c_1 e^{-t} + c_2 t e^{-t}$. Set up the solution for v_p using variation of parameters, and solve them to obtain explicit equations for u'_1 and u'_2 in terms of t only. (Do not solve these to find u_1 and u_2 .)

Solution: Our guess for v_p is $v_p = u_1 e^{-t} + u_2 t e^{-t}$. We know with variation of parameters, the equations that u_1 and u_2 must satisfy are $u'_1 e^{-t} + u'_2 t e^{-t} = 0$, $-u'_1 e^{-t} + u'_2 (e^{-t} - t e^{-t}) = \cos(\omega t)$. The first give $u'_1 = -tu'_2$, so the second becomes $u'_2 = e^t \cos(\omega t)$. Therefore, the equation for u_1 becomes $u'_1 = -te^t \cos(\omega t)$.

c. [4 points] It turns out that, for some A and B, $v_p = A\cos(\omega t) + B\sin(\omega t)$. Representative values of A and B are given for different values of ω in the table below. Does the system exhibit resonance? Write the response v_p to a forcing of $\cos(2t)$ in phase-amplitude form.

$\omega =$	1	2	3	4	5
A =	0	-0.12	-0.08	-0.06	-0.04
B =	1	0.64	0.36	0.22	0.15

Solution: We see that the amplitude of v_p , $R = \sqrt{A^2 + B^2}$, is never larger than one, so there is no resonance. When $\omega = 2$, A = -0.12 and B = 0.64, so $R = \sqrt{0.144 + 0.4096} \approx \sqrt{0.424}$. The phase shift δ has A < 0 and B > 0, so we need $\delta = \pi - \arctan(0.64/0.12) \approx \pi - \arctan(5.33)$. Thus $v_p = \sqrt{0.424} \cos(2t - (\pi - \arctan(5.33)))$.