5. [14 points] Consider the initial value problem $y^{\prime \prime}+4 y^{\prime}+4 y=9 e^{-2 t}, y(0)=1, y^{\prime}(0)=0$.
a. [6 points] Solve the problem without using Laplace transforms.

Solution: We first note that with $y=e^{\lambda t}$, the characteristic equation for the complementary homogeneous solution is $\lambda^{2}+4 \lambda+4=(\lambda+2)^{2}=0$. Thus $\lambda=-2$, repeated, and $y_{c}=c_{1} e^{-2 t}+c_{2} t e^{-2 t}$.
For the particular solution, we therefore guess $y_{p}=a t^{2} t^{-2 t}$, so that $y_{p}^{\prime}=2 a t e^{-2 t}-$ $2 a t^{2} e^{-2 t}$, and $y_{p}^{\prime \prime}=2 a e^{-2 t}-8 a t e^{-2 t}+4 a t^{2} e^{-2 t}$. Plugging in, we have

$$
2 a e^{-2 t}-8 a t e^{-2 t}+4 a t^{2} e^{-2 t}+4\left(2 a t e^{-2 t}-2 a t^{2} e^{-2 t}\right)+4 a t^{2} e^{-2 t}=9 e^{-2 t}
$$

so that $a=\frac{9}{2}$. Thus the general solution is

$$
y=c_{1} e^{-2 t}+c_{2} t e^{-2 t}+\frac{9}{2} t^{2} e^{-2 t} .
$$

Applying the initial conditions, $y(0)=c_{1}=1$, and $y^{\prime}(0)=-2 c_{1}+c_{2}=-2+c_{2}=0$, so that $c_{2}=2$. The solution is therefore

$$
y=e^{-2 t}+2 t e^{-2 t}+\frac{9}{2} t^{2} e^{-2 t} .
$$

b. [8 points] Solve the problem with Laplace transforms.

Solution: We transform both sides of the equation to find, with $Y=\mathcal{L}\{y\}$,

$$
s^{2} Y-s+4 s Y-4+4 Y=\frac{9}{s+2}
$$

so that $Y=\frac{s+4}{(s+2)^{2}}+\frac{9}{(s+2)^{3}}$. The easiest way to find the inverse transform is to rewrite Y solely in terms of $s+2$:

$$
Y=\frac{(s+2)+2}{(s+2)^{2}}+\frac{9}{(s+2)^{3}}=\frac{1}{s+2}+\frac{2}{(s+2)^{2}}+\frac{9}{(s+2)^{3}},
$$

so that (applying for the second and third the rules for $F(s-c)$ and $1 / s^{n}$)

$$
y=e^{-2 t}+2 t e^{-2 t}+\frac{9}{2} t^{2} e^{-2 t}
$$

We can also find the inverse transform of the first by using partial fractions and letting $\frac{s+4}{(s+2)^{2}}=\frac{A_{0}}{s+2}+\frac{A_{1}}{(s+2)^{2}}$. Clearing the denominator, $s+4=A_{0}(s+2)+A_{1}$, so that $A_{0}=1$ and $A_{1}=2$. Thus

$$
Y=\frac{1}{s+2}+\frac{2}{(s+2)^{2}}+\frac{9}{(s+2)^{3}},
$$

and the inverse transform is as before.

