6. [15 points] Complete each of the following problems having to do with the Laplace transform.
a. [5 points] Find the inverse Laplace transform of $F(s)=\frac{5 s}{s^{2}+4 s+6}$

Solution: Note that $s^{2}+4 s+6=(s+2)^{2}+2$. Thus $\frac{5 s}{s^{2}+4 s+6}=\frac{5(s+2)}{(s+2)^{2}+2}-\frac{10}{(s+2)^{2}+2}$, and the inverse transform is

$$
\mathcal{L}^{-1}\left\{\frac{5(s+2)}{(s+2)^{2}+2}-\frac{10}{(s+2)^{2}+2}\right\}=5 e^{-2 t} \cos (\sqrt{2} t)-5 \sqrt{2} e^{-2 t} \sin (\sqrt{2} t) .
$$

b. [5 points] Given that $F(s)=\mathcal{L}\{f(t)\}$, use the integral definition of the Laplace transform to derive the transform rule $-F^{\prime}(s)=\mathcal{L}\{t f(t)\}$.

Solution: We have $F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t$. Thus, assuming that the integral converges in a manner that allows differentiation through the integral sign,

$$
\begin{aligned}
-F^{\prime}(s)=-\int_{0}^{\infty} \frac{d}{d s}\left(e^{-s t}\right) f(t) d t=- & \int_{0}^{\infty}-t e^{-s t} f(t) d t \\
& =\int_{0}^{\infty} e^{-s t} t f(t) d t=\mathcal{L}\{t f(t)\}
\end{aligned}
$$

c. [5 points] Consider the initial value problem $t y^{\prime \prime}+y=0, y(0)=1, y^{\prime}(0)=0$. If $Y=\mathcal{L}\{y\}$, what equation does Y satisfy?

Solution: Note that $\mathcal{L}\left\{y^{\prime \prime}\right\}=s^{2} Y-s$, and that the transform rule in part (b) above (also, rule B on the formula sheet) gives $\mathcal{L}\{t f(t)\}=-F^{\prime}(s)$. Thus, with $f(t)=y^{\prime \prime}$ and $F(s)=s^{2} Y(s)-1$, we have $\mathcal{L}\left\{t y^{\prime \prime}\right\}=-s^{2} Y^{\prime}(s)-2 s Y(s)+1$. Transforming the differential equation, we therefore have

$$
-s^{2} Y^{\prime}(s)-2 s Y(s)+1+Y(s)=0
$$

a first-order equation for $Y(s)$. Note that we can rewrite this as $Y^{\prime}+\frac{2 s-1}{s^{2}} Y=\frac{1}{s^{2}}$, so the equation is first-order and linear, and therefore solvable at least in principle. It is not clear if we would be able to invert the resulting $Y(s)$, however.

