7. [15 points] Consider the system of differential equations $x^{\prime}=3 x+4 y, y^{\prime}=2 x+y$, with initial conditions $x(0)=0, y(0)=2$.
a. [6 points] Using Laplace transforms, find explicit equations for $X=\mathcal{L}\{x\}$ and $Y=\mathcal{L}\{y\}$.

Solution: We have $X=\mathcal{L}\{x\}$ and $Y=\mathcal{L}\{y\}$. Then, transforming both equations, we have $s X=3 X+4 Y$ and $s Y-2=2 X+Y$. Thus $Y=\frac{1}{4}(s-3) X$, and the second equation becomes $(s-1) \frac{1}{4}(s-3) X-2 X=2$, or $X=\frac{8}{s^{2}-4 s-5}=\frac{8}{(s-5)(s+1)}$. Plugging back into the equation for Y, we have

$$
X=\frac{8}{(s-5)(s+1)}, \quad Y=\frac{2(s-3)}{(s-5)(s+1)} .
$$

b. [4 points] Find x and y in terms of any constants you may have in partial fractions expansions of X and Y (that is, do not solve for the values of those constants).

Solution: We can find the inverse transforms for both of these by using partial fractions: for X, we have $X=A /(s-5)+B /(s+1)$. For Y, we have $Y=C /(s-5)+D /(s+1)$. Thus

$$
x=A e^{5 t}+B e^{-t}, \quad y=C e^{5 t}+D e^{-t} .
$$

If we complete the solution, which is not required in the problem, we have in the partial fractions decomposition for $X 8=A(s+1)+B(s-5)$. Plugging in $s=5$ and $s=-1$, we get $A=\frac{4}{3}$ and $B=-\frac{4}{3}$. Similarly for Y, we have $2 s-6=C(s+1)+D(s-5)$. Plugging in $s=5$ and $s=-1$, we have $C=\frac{2}{3}$ and $D=\frac{4}{3}$. Thus the wolution is

$$
x=\frac{4}{3} e^{5 t}-\frac{4}{3} e^{-t}, \quad y=\frac{2}{3} e^{5 t}+\frac{4}{3} e^{-t} .
$$

c. [5 points] If we rewrote the system as a second order differential equation $L[y]=0$ for y, what would the characteristic equation for λ be? What is the linear operator L ?
Solution: The characteristic equation for λ can be seen from the denominator of X and Y, or from the exponentials in x and $y:(\lambda-5)(\lambda+1)=\lambda^{2}-4 \lambda-5=0$. Thus the operator L is $L=D^{2}-4 D-5$, or some constant multiple thereof.

