1. [12 points] Find each of the following.
a. [7 points] Use the integral definition of the Laplace transform to find $F(s)=\mathcal{L}\{f(t)\}$, where

$$
f(t)= \begin{cases}e^{-1}, & 0<t \leq 1 \\ e^{-t}, & 1<t<\infty\end{cases}
$$

Solution: Applying the transform, we have

$$
\begin{aligned}
F(s) & =\int_{0}^{\infty} f(t) e^{-s t} d t \\
& =\int_{0}^{1} e^{-1} e^{-s t} d t+\int_{1}^{\infty} e^{-(s+1) t} d t \\
& =-\left.\frac{1}{s} e^{-1} e^{-s t}\right|_{t=0} ^{t=1}-\left.\frac{1}{s+1} e^{-(s+1) t}\right|_{t=1} ^{t \rightarrow \infty} \\
& =\frac{1}{s}\left(e^{-1}-e^{-(s+1)}\right)+\frac{1}{s+1} e^{-(s+1)} .
\end{aligned}
$$

b. [5 points] Give another function $g(t)$ for which $\mathcal{L}\{g(t)\}=F(s)$. Explain your answer briefly.
Solution: Because the transform is defined as an integral, any single point differences between g and f will not change the transform. Thus, we could take

$$
g(t)= \begin{cases}e^{-1}, & 0<t<1 \\ 1, & t=1 \\ e^{-t}, & 1<t<\infty\end{cases}
$$

or any other variation where we make $g(t)$ piecewise continuous with isolated points that have a different value from $f(t)$.

