2. [15 points] In each of the following \mathcal{L} is the Laplace transform operator, and, in (b), L is a linear, constant-coefficient differential operator.
a. [5 points] If $x^{\prime}=3 x+4 y$ and $y^{\prime}=2 x-y$, with initial conditions $x(0)=0$ and $y(0)=2$, find $X=\mathcal{L}\{x\}$ and $Y=\mathcal{L}\{y\}$.
Solution: Taking the forward transform of both equations, we have $s X-0=3 X+4 Y$, $s Y-2=2 X-Y$. Rewriting as a linear algebraic system, we have

$$
\begin{aligned}
(s-3) X-4 Y & =0 \\
-2 X+(s+1) Y & =2 .
\end{aligned}
$$

Taking $(s+1)$ times the first and 4 times the second and adding, we find

$$
X=\frac{8}{(s+1)(s-3)-8}=\frac{8}{s^{2}-2 s-11} .
$$

Similarly, taking 2 times the first and $(s-3)$ times the second and adding, we get

$$
Y=\frac{2(s-3)}{(s-3)(s+1)-8}=\frac{2(s-3)}{s^{2}-2 s-11} .
$$

b. [5 points] Suppose that when solving an equation $L[y]=f(t), y(0)=y_{0}, y^{\prime}(0)=v_{0}$ using the Laplace transform, we find

$$
\mathcal{L}\{y(t)\}=Y(s)=\frac{5}{(s+1)(s+2)}+\frac{s}{(s+1)(s+2)\left(s^{2}+4\right)} .
$$

What are $L, f(t)$, and the initial conditions y_{0} and v_{0} ?
Solution: The factors $(s+1)(s+2)=s^{2}+3 s+2$ in both terms of the denominator indicate that $L=D^{2}+3 D+2$. The second term is the response to the forcing term $f(t)$, for which we see $\mathcal{L}\{f(t)\}=\frac{s}{s^{2}+4}$, so $f(t)=\cos (2 t)$. Finally, the first term on the right-hand side is the response to the initial forcing. We see that there is no s in the numerator, so $y_{0}=0$; then $v_{0}=5$ to give the desired form.
c. [5 points] Derive the transform rule $\mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)$ for a continuous function $f(t)$.
Solution: We apply the integral definition of the transform:

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=\int_{0}^{\infty} f^{\prime}(t) e^{-s t} d t .
$$

Integrating by parts with $u=e^{-s t}$ and $v^{\prime}=f^{\prime}(t)$, we have

$$
\int_{0}^{\infty} f^{\prime}(t) e^{-s t} d t=\left.e^{-s t} f(t)\right|_{t=0} ^{t \rightarrow \infty}+s \int_{0}^{\infty} e^{-s t} f(t) d t=-f(0)+s \mathcal{L}\{f(t)\}
$$

assuming that the limit in the first term is well behaved as $t \rightarrow \infty$.

