6. [15 points] For each of the following find explicit, real-valued solutions as indicated. For this problem do not use Laplace transforms. Note that you do not need to simplify numeric expressions.
a. [8 points] Find the solution to $3 y^{\prime \prime}+4 y^{\prime}+y=5 e^{-t}, y(0)=y^{\prime}(0)=0$

Solution: We look for a homogeneous solution of the form $y=e^{r t}$, so that $3 r^{2}+4 r+1=$ $(3 r+1)(r+1)=0$, and $r=-\frac{1}{3}$ or $r=-1$. The complementary homogeneous solution is therefore $y=c_{1} e^{-t / 3}+c_{2} e^{-t}$. For the particular solution we look for $y=A t e^{-t}$, because the exponential is part of the homogeneous solution. Plugging this into the equation, we have

$$
3\left(-2 A e^{-t}+A t e^{-t}+4\left(A e^{-t}-A t e^{-t}\right)+A t e^{-t}=-2 A e^{-t}=5 e^{-t}\right.
$$

so that $A=-\frac{5}{2}$. Our general solution is therefore

$$
y=c_{1} e^{-t / 3}+c_{2} e^{-t}-\frac{5}{2} t e^{-t} .
$$

The initial condition requires that $c_{1}+c_{2}=0$ and $-\frac{1}{3} c_{1}-c_{2}-\frac{5}{2}=0$. Thus (adding), $c_{1}=\frac{15}{4}$ and $c_{2}=-\frac{15}{4}$, so that

$$
y=\frac{15}{4} e^{-t / 3}-\frac{15}{4} e^{-t}-\frac{5}{2} t e^{-t} .
$$

b. [7 points] Find the general solution to $y^{\prime \prime}+2 y^{\prime}+10 y=5 t$.

Solution: The homogeneous solution is given by $y=e^{r t}$, so that $r^{2}+2 r+10=(r+$ $1)^{2}+9=0$, and $r=-1 \pm 3 i$. The homogeneous solution is therefore $y=c_{1} e^{-t} \cos (3 t)+$ $c_{2} e^{-t} \sin (3 t)$. The particular solution is $y_{p}=A t+B$, so that $A=\frac{1}{2}$ and $B=-\frac{1}{10}$, so that the general solution is

$$
y=c_{1} e^{-t} \cos (3 t)+c_{2} e^{-t} \sin (3 t)+\frac{1}{2} t-\frac{1}{10} .
$$

