7. [15 points] For each of the following find explicit, real-valued solutions as indicated. For this problem, do use Laplace transforms.
a. [8 points] Solve $y^{\prime \prime}+2 y^{\prime}+10 y=5, y(0)=1, y^{\prime}(0)=2$.

Solution: With $Y=\mathcal{L}\{y\}$, the forward transform gives $s^{2} Y-2-s+2 s Y-2+10 Y=\frac{5}{s}$, so that

$$
Y=\frac{s+4}{(s+1)^{2}+9}+\frac{5}{s\left((s+1)^{2}+9\right)}
$$

To invert the second of these, we use partial fractions, letting $\frac{A}{s}+\frac{B s+C}{(s+1)^{2}+9}=\frac{5}{s\left((s+1)^{2}+9\right)}$. Clearing the denominator, we must have $A\left(s^{2}+2 s+10\right)+B s^{2}+C s=5$. Thus $A=\frac{1}{2}$; matching terms in $s^{2}, B=-A=-\frac{1}{2}$; and matching terms in $s, C=-2 A=-1$. We can therefore rewrite Y as

$$
Y=\frac{(s+1)+3}{(s+1)^{2}+9}+\frac{1}{2 s}-\frac{1}{2} \frac{(s+1)+1}{(s+1)^{2}+9} .
$$

Inverting, we have

$$
y=e^{-t} \cos (3 t)+e^{-t} \sin (3 t)+\frac{1}{2}-\frac{1}{2} e^{-t} \cos (3 t)-\frac{1}{6} e^{-t} \sin (3 t),
$$

or, combining terms,

$$
y=\frac{1}{2} e^{-t} \cos (3 t)+\frac{5}{6} e^{-t} \sin (3 t)+\frac{1}{2} .
$$

b. [7 points] Find the solution to $y^{\prime \prime}+5 y^{\prime}+6 y=e^{-3 t}, y(0)=y^{\prime}(0)=0$.

Solution: As before, the forward transform gives $\left(s^{2}+5 s+6\right) Y=\frac{1}{s+3}$, so that $Y=$ $\frac{1}{(s+2)(s+3)^{2}}$. Using partial fractions,

$$
\frac{1}{(s+2)(s+3)^{2}}=\frac{A}{s+2}+\frac{B}{s+3}+\frac{C}{(s+3)^{2}} .
$$

Clearing denominators, $A(s+3)^{2}+B(s+2)(s+3)+C(s+2)=1$. Plugging in $s=-2$, $A=1 ;$ plugging in $s=-3, C=-1$. Finally, with $s=-1,4 A+2 B+C=3+2 B=1$, and $B=-1$. Thus

$$
y=\mathcal{L}^{-1}\left\{\frac{1}{s+2}-\frac{1}{s+3}-\frac{1}{(s+3)^{2}}\right\}=e^{-2 t}-e^{-3 t}-t e^{-3 t} .
$$

