6. [15 points] Consider a physical system modeled by the differential equation

$$
x^{\prime \prime}+\gamma x^{\prime}+k x=f(t),
$$

where $x(t)$ is the physical quantity being measured and γ and k are constants.
a. [4 points] If the physical system is underdamped, what can you say about the parameters γ and k ?
b. [5 points] If $x(0)=x_{0}, x^{\prime}(0)=v_{0}$, and $\mathcal{L}\{f(t)\}=F(s)$, find the transform $X(s)=$ $\mathcal{L}\{x(t)\}$.
c. [6 points] If $f(t)=0$, assuming as in (a) that the system is underdamped, invert your transform from (b) to find $x(t)$. (If you are stuck, assume the equation is $x^{\prime \prime}+\gamma x^{\prime}+\gamma^{2} x=$ 0.)

