6. [15 points] Consider a physical system modeled by the differential equation
\[x'' + \gamma x' + kx = f(t), \]
where \(x(t) \) is the physical quantity being measured and \(\gamma \) and \(k \) are constants.

a. [4 points] If the physical system is underdamped, what can you say about the parameters \(\gamma \) and \(k \)?

b. [5 points] If \(x(0) = x_0, \ x'(0) = v_0 \), and \(\mathcal{L}\{f(t)\} = F(s) \), find the transform \(X(s) = \mathcal{L}\{x(t)\} \).

c. [6 points] If \(f(t) = 0 \), assuming as in (a) that the system is underdamped, invert your transform from (b) to find \(x(t) \). (If you are stuck, assume the equation is \(x'' + \gamma x' + \gamma^2 x = 0 \).)