7. [12 points] In the following we consider two linear, homogeneous, second-order, constant coefficient differential equations, for $y(t)$ and $z(t)$. The phase portrait for the equation for $y(t)$ is shown to the right, and graphs of $z(t)$ for two different initial conditions are shown in the figure to the right, below. Explain in a sentence or two why each of the following cannot be true.
a. [3 points] The equation is $y^{\prime \prime}-3 y^{\prime}+2 y=0$

b. [3 points] The general solution to the equation is $y=c_{1} e^{-t}+c_{2} e^{-2 t}$.
c. [3 points] Given some initial conditions, the Laplace transform $Z(s)=\mathcal{L}\{z(t)\}=\frac{2 s+4}{s^{2}+2 s+5}$.

d. [3 points] Written as a system, the equation for $z(t)$ is $\binom{x_{1}}{x_{2}}^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -4 & 0\end{array}\right)\binom{x_{1}}{x_{2}}$.
