1. [15 points] Find explicit, real-valued solutions to each of the following, as indicated. For this problem, DO NOT use Laplace transforms.
a. [8 points] Find the solution $z(t)$ to the initial value problem $3 z^{\prime \prime}+12 z^{\prime}+39 z=6 e^{-t}$, $z(0)=\frac{1}{5}, z^{\prime}(0)=0$
Solution: This problem is nonhomogeneous, linear, and constant-coefficient. The general solution will be $z=z_{c}+z_{p}$, where z_{c} is the general solution to the complementary homogeneous problem. For this we look for a solution $z=e^{\lambda t}$. Plugging in to the homogeneous equation, we have $3 \lambda^{2}+12 \lambda+39=3\left(\lambda^{2}+4 \lambda+13\right)=3\left((\lambda+2)^{2}+9\right)=0$. Thus $\lambda=-2 \pm 3 i$. Separating the real and imaginary parts of the resulting complex exponential, we have $z_{c}=c_{1} e^{-2 t} \cos (3 t)+c_{2} e^{-2 t} \sin (3 t)$.

Then, to find z_{p}, we use undertermined coefficients and look for a solution of the form $z_{p}=A e^{-t}$. Plugging into the differential equation, we have $3 A-12 A+39 A=6$, or $10 A=2$, so that $A=\frac{1}{5}$. Thus

$$
z=c_{1} e^{-2 t} \cos (3 t)+c_{2} e^{-2 t} \sin (3 t)+\frac{1}{5} e^{-t}
$$

Applying the initial conditions, we have $z(0)=c_{1}+\frac{1}{5}=\frac{1}{5}$, so $c_{1}=0$. Then $z^{\prime}(0)=3 c_{2}-\frac{1}{5}=0$, so that $c_{2}=\frac{1}{15}$, and

$$
z=\frac{1}{15} e^{-2 t} \sin (3 t)+\frac{1}{5} e^{-t}
$$

b. [7 points] Find the general solution $y(t)$ to $y^{\prime \prime}+5 y^{\prime}+6 y=\cos (t)$.

Solution: Again, the general solution will be $y=y_{c}+y_{p}$. For y_{c}, the characteristic equation is $\lambda^{2}+5 \lambda+6=(\lambda+2)(\lambda+3)=0$, so $\lambda=-2$ or $\lambda=-3$, and $y_{c}=c_{1} e^{-2 t}+c_{2} e^{-3 t}$. For y_{p}, we again use the method of undetermined coefficients and guess $y_{p}=a \cos (t)+$ $b \sin (t)$. Plugging into the equation, we have

$$
(-a \cos (t)-b \sin (t))+(-5 a \sin (t)+5 b \cos (t))+6 a \cos (t)+6 b \sin (t)=\cos (t) .
$$

Collecting the $\cos (t)$ and $\sin (t)$ terms, this is $5 a+5 b=1$ and $-5 a+5 b=0$. Adding the two we get $b=\frac{1}{10}$, so that from the second $a=\frac{1}{10}$, and the

$$
y=c_{1} e^{-2 t}+c_{2} e^{-3 t}+\frac{1}{10} \cos (t)+\frac{1}{10} \sin (t) .
$$

